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Abstract

Background: Members of the signal transducer and activator of transcription (Stat) family of transcription factors traverse
the nuclear membrane through a specialized structure, called the nuclear pore complex (NPC), which represents a selective
filter for the import of proteins. Karyophilic molecules can bind directly to a subset of proteins of the NPC, collectively called
nucleoporins. Alternatively, the transport is mediated via a carrier molecule belonging to the importin/karyopherin
superfamily, which transmits the import into the nucleus through the NPC.

Methodology/Principal Findings: In this study, we provide evidence for an alternative Stat1 nuclear import mechanism,
which is mediated by the shuttle protein nucleolin. We observed Stat1-nucleolin association, nuclear translocation and
specific binding to the regulatory DNA element GAS. Using expression of nucleolin transgenes, we found that the nuclear
localization signal (NLS) of nucleolin is responsible for Stat1 nuclear translocation. We show that this mechanism is utilized
upon differentiation of myeloid cells and is specific for the differentiation step from monocytes to macrophages.

Conclusions/Significance: Our data add the nucleolin-Stat1 complex as a novel functional partner for the cell differentiation
program, which is uniquely poised to regulate the transcription machinery via Stat1 and nuclear metabolism via nucleolin.
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Introduction

Human blood monocytes are able to differentiate into

morphologically and functionally heterogeneous effector cells,

including macrophages. The precise molecular mechanisms

responsible for differentiation of circulating monocytes into tissue

macrophages are, however, incompletely defined. Recent studies

highlight the role of transcription factors and other nucleo-

cytoplasmic shuttling proteins in these processes, which require

dynamic changes in gene expression [1,2].

Nucleolin is an ubiquitous multifunctional nucleolar shuttle

phosphoprotein in eukaryotic cells. Its tripartite domain structure,

with an acidic histone-like N-terminus, a central domain

containing four RNA binding domains, and an arginine and

glycine rich C-terminus, reflects the diverse roles of nucleolin in

cell growth, proliferation, and cell death (reviewed in [3–5]).

Nucleolin has been implicated in many cellular activities, including

pre-ribosomal RNA transcription and ribosome biogenesis [6],

replication and recombination of DNA, cell cycle progression [7],

viral infection [8,9], and apoptosis [10–13]. One remarkable

characteristic of nucleolin is that it shuttles constantly between the

nucleus and the cytoplasm [14] and additionally serves in some

cell types as a cell surface receptor [12,15–17]. For the

nucleocytoplasmic translocation, nucleolin uses its bipartite

nuclear localisation signal (NLS) located between the N-terminal

and central domains, and thereby acts as a carrier for karyophilic

proteins [18–20]. A growing body of evidence shows interactions

of nucleolin with transcription factors [6,21–23].

Members of the signal transducer and activator of transcription

(Stat) family of transcription factors are activated during the

myeloid differentiation and may play an important role in the

differentiation program, including those of monocyte-to-macro-

phages [24–26,2,27,28–30]. In response to ligand binding of

cytokines and growth factors to cell surface receptors, the

cytoplasmically located Stats become phosphorylated, form

dimers, enter the nucleus, and bind to specific DNA sequences

that often results in an alteration of gene expression profiles [31].

The exact role of Stat proteins in the regulation of proliferation

and terminal cell differentiation of myeloid cells remains to be

elucidated.

To enter the nucleus, the Stats have to traverse the nuclear

membrane through a specialized structure, called the nuclear pore

complex (NPC), which represents a selective filter for the import of

proteins [32]. Karyophilic molecules can bind directly to a subset

of proteins of the NPC, collectively called nucleoporins [33,34].

Alternatively, the transport is mediated via a carrier molecule
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belonging to the importin/karyopherin superfamily, which binds

to the NLS of the macromolecular cargoes, and transmits the

import into the nucleus through the NPC. For Stat proteins both,

the carrier-independent and the carrier-dependent nucleocyto-

plasmic shuttling have been described [35,36].

The aim of the present work was to analyze a possible

involvement of the multifunctional shuttle protein nucleolin in

myeloid differentiation of monocytic cells to macrophages. We

report that during the monocyte-to-macrophage differentiation,

nucleolin associates with the transcription factor Stat1. This

association is specific for cells of monocytic origin and is involved

in the monocyte-to-macrophage differentiation program. Using

expression of nucleolin transgenes, we found that the NLS

sequence of nucleolin is responsible for Stat1 nuclear translocation

and formation of a ternary complex of nucleolin, Stat1 and the

Stat1 target DNA. Our study provides evidence that in addition to

so far known Stat1 nuclear import mechanisms an alternative

pathway exist, which involves nucleolin-mediated Stat1 transport

to the nucleus.

Results

Nucleolin and Stat1 Associate during Monocyte-to-
Macrophage Differentiation

Nucleolin plays an important role in the differentiation program

of hematopoietic cells [37,38]. As a nucleocytoplasmic shuttle

protein, nucleolin binds to transcription factors and modulates

gene expression during differentiation. To identify binding

partners of nucleolin involved in monocytes differentiation, a

nucleolin affinity matrix precipitation assay was performed. For

this purpose, we used the N-terminal domain lacking nucleolin

construct (DN-Ncl) generated from human cDNA clones,

bacterially expressed as a GST fusion protein and bound to

glutathione agarose. Human myeloid leukaemia THP-1 cells were

stimulated up to four days with the phorbol ester PMA to induce

the differentiation process, and whole cell lysates were used for the

pull-down assay. It has been reported previously that Stat proteins

are activated during myeloid differentiation [2]. Therefore, we

addressed first these transcription factors and analyzed eluates of

our pull-down assays using antibodies against Stat proteins. We

found in these experiments that the transcription factor Stat1, but

not other Stats (Stat2, Stat3, Stat4, Stat5), was specifically bound

to the nucleolin-GST matrix (Fig. 1A and data not shown). This

binding was time-dependent peaking at 72 hrs of PMA treatment.

The macrophage differentiation was monitored by the expression

of specific cell surface proteins (Fig. 1B). In the phase contrast

images and after Wrights-Giemsa staining, PMA treated cells

showed the characteristic macrophage morphology, namely, larger

cell size, increased membrane ruffles, and large cytoplasm

pseudopodia of the adherent cells (Fig. 1C).

To provide further evidence for the nucleolin-Stat1 binding,

several approaches were used. Since the C-terminal glycine/

arginine-rich domain of nucleolin (RGG) was reported to serve for

nucleolin interactions [3], the corresponding nucleolin constructs

(C(Ncl) and DN(Ncl)) were generated, as well as a full-length Stat1

(Fig. 2A). Pull-down assays using both DN(Ncl)-GST and C(Ncl)-

GST, as well as Stat1-GST, confirmed nucleolin- Stat1 binding in

THP-1 cells stimulated for differentiation. These results suggest

that the RGG region of nucleolin is involved in this interaction.

The Stat1-nucleolin binding was additionally found in cells of the

human U937 promyelocytic cell line and in the M1 mouse

myeloid leukemia cells stimulated for differentiation (Fig. 2B). To

assess whether nucleolin and Stat1 might associate in living cells,

co- immunoprecipitation experiments using anti-nucleolin and

Figure 1. Stat1 and nucleolin bind in THP-1 cells in a time-
dependent manner. (A) Nucleolin-GST fusion proteins were bound to
glutathione agarose and used as affinity matrix in a pull-down assay
with whole cell extracts from non-stimulated or PMA (2 nM) stimulated
THP-1 cells. Eluates were analyzed by Western blotting; GST glutathione
agarose was used as control. (B) THP-1 cells treated as described above
were analyzed by FACS analysis. Cell surface expressions of CD11b and
CD36 were used to monitor the process of the monocyte-macrophage
differentiation. (C) Phase contrast picture and Wright-Giemsa staining of
non-stimulated and PMA stimulated THP-1 cells.
doi:10.1371/journal.pone.0008302.g001

Stat1-Nucleolin Complex
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anti-Stat1 antibodies were performed. Indeed, both proteins were

co-immunoprecipitated. Remarkably, nucleolin-Stat1 association

was only observed in cells stimulated for differentiation, but not in

the unstimulated cells (Fig. 2C). As a third approach investigating

Stat1-nucleolin interference, we performed cross-linking studies

(Fig. 2D). Cytosolic proteins of PMA stimulated THP-1 cells were

subjected to cross-linking using chemical cross-linker BS3, followed

by immunoprecipitation with anti-nucleolin (left panel) or anti-

Stat1 antibodies (right panel). An additional high molecular mass

band over 250 kDa was revealed in both experimental settings.

From the molecular mass value, we assume that the complex

contains a Stat1 dimer and nucleolin. These findings implicate a

direct interaction between Stat1 and nucleolin.

Since usage of cell lines and cell stimulation with PMA reflects a

model system, we were interested whether association of nucleolin

with Stat1 might have a physiological relevance. For this purpose,

a full-length human macrophage colony stimulating factor

receptor (M-CSFR), which is a physiological receptor to mediate

monocyte differentiation, was expressed in THP-1 cells by means

of a lentiviral gene transfer. The expressed M-CSFR was

functionally competent and revealed an autophosphorylation in

response to stimulation with its natural ligand, CSF-1 (Fig. 3A).

Pull-down assay demonstrated binding of nucleolin and Stat1 in

M-CSFR expressing THP-1 cells stimulated with CSF-1 (Fig. 3B).

The same results were obtained in highly purified human

peripheral blood derived monocytes (Fig. 3C), but not in cells of

non-monocytic origin like primary vascular smooth muscle cells,

endothelial cells or cells of the fibrosarcoma HT1080 cell line (data

not shown). The increased association of Stat1 with nucleolin upon

cell stimulation was not related to changes in their expression. As

shown in control experiments, neither Stat1 nor nucleolin protein

expression was affected upon the differentiation process (Fig. 3C).

Together, these data indicate that Stat1-nucleolin association is

a physiological phenomenon specific for cells of monocytic origin.

Nucleolin-Stat1complex Translocates into the Nucleus
and Binds to the Stat1 Specific DNA Sequence GAS

Nucleolin can shuttle between the nucleus and the cytoplasm

[14]. Activated Stat proteins form dimers, enter the nucleus, and

bind to specific DNA sequences to affect gene transcription [31].

To investigate the cellular localization of nucleolin and Stat1

during the differentiation process, immunocytochemical studies

were performed. Human primary monocytes were stimulated with

CSF-1 for indicated time points to induce monocyte-to-macro-

phage differentiation. The staining patterns in the confocal images

demonstrated that though Stat1 was mainly expressed in the

cytoplasm and nucleolin in the nucleus, both proteins revealed co-

localization in the perinuclear space followed by their nuclear

translocation. The maximal colocalization of nucleolin and Stat1,

as well as individual colocalization of both proteins with nuclear

marker was observed after 72 hours CSF-1 treatment. At this time

point, most of the cells showed the characteristic macrophage

Figure 2. Stat1-nucleolin complex is specifically formed in cells of monocytic origin. (A) Schematic presentation of nucleolin and Stat1
constructs generated from human cDNA clones to express GST fusion proteins. (B) Different cell lines of monocytic origin cultured for 72 hrs without
or with indicated stimuli were analyzed in pull-down assay using nucleolin- or Stat1-GST fusion proteins bound to glutathione agarose. Respective
anti-Stat1 or anti-Ncl antibody was used for Western blotting of eluates. (C) Co-immunoprecipitation studies with whole-cell extracts from non-
stimulated or PMA stimulated THP-1 cells. Anti-nucleolin or anti-Stat1 antibody coupled to protein A/G-agarose was used as affinity matrix. Eluted
proteins were analyzed by Western blotting with corresponding antibodies to detect Stat1 or nucleolin. (D) Proteins were released by hypotonic
shock of non-stimulated or PMA stimulated THP-1 cells. S100 fractions were subjected to chemical cross-linking using BS3, followed by
immunoprecipitation and Western blotting.
doi:10.1371/journal.pone.0008302.g002
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morphology (Fig. 4A, lower panel). Cell differentiation was

additionally controlled by the expression of the cell surface

macrophage-mannose receptor (CD206) by FACS analysis

(Fig. 4B). The observed nucleolin-Stat1 colocalization was

transient and decreased with longer stimulation.

We next asked whether or not the nucleolin-Stat1 complex

binds to the Stat1 specific DNA sequences after translocation into

the nucleus. In our EMSA, 32P-labeled GAS oligonucleotide was

used as a probe to analyze nuclear extracts from THP-1 cells

activated with PMA for up to 72 hours. Cells stimulated with

interferon-gamma (IFNc), which is one of the most effective Stat1-

activating cytokines, were used as a positive control. The results of

these experiments are presented in Fig. 5. Cell stimulation with

PMA led to the induction of one specific DNA-binding protein

complex migrating in gel more slowly than complex formed in

response to IFNc. The kinetics of the DNA binding activity

correlated with those for the Stat1-nucleolin nuclear translocation

(Fig. 4A). No binding to the GAS was detected in the presence of

excess of unlabeled GAS, whereas an unrelated oligonucleotide

did not affect the DNA-protein binding. To examine the presence

of Stat1 and/or nucleolin in the observed complex, a supershift

assay was performed. The corresponding band was inhibited by

both anti-Stat1 and anti-nucleolin antibody.

These data implicate a role of the nucleolin-Stat1 complex for

the regulated gene expression upon the monocyte differentiation

program.

Nucleolin Serves as a Carrier for the Nuclear
Translocation of Stat1

Molecular mechanisms of Stat1 nuclear translocation have been

intensively studied [39] However, an involvement of nucleolin in

this process has not been reported yet. Therefore, we next

examined whether the observed association of nucleolin and Stat1

is necessary for the transport of this transcription factor into the

nucleus. We specifically inhibited nucleolin expression in THP-1

cells by RNA silencing using a lentiviral RNA interference vector

constructed for this purpose. Up to 70% of infection rate was

achieved by this way (Fig. 6), whereas conventional transfection

reagents showed only low efficiency in cells of monocytic origin

[40].

To elucidate whether nucleolin is required for the nuclear

transport of Stat1, we performed cell fractionation and examined

nuclear extracts isolated from Nclsi-THP-1 cells, non-treated or

treated with PMA for 72 hrs. Specific markers were used to

control the purity of obtained fractions (Fig. 7A). Stat1 enrichment

in nuclear fractions was strongly impaired in PMA stimulated

Nclsi-THP-1 cells, but not in control infected cells. Interestingly,

we found no impact of nucleolin on the Stat1 nuclear transport in

response to IFNc. Thus, although IFNc elicited Stat1 enrichment

in nuclear fractions, there was no difference between the IFNc
stimulated Nclsi-THP-1 cells and control infected cells. In

addition, longer stimulation with IFNc did not show any influence

of nucleolin on the Stat1 nuclear distribution (data not shown).

These data favor a specificity of the nucleolin- dependent Stat1

nuclear translocation for the monocyte-to-macrophage differenti-

ation, which is independent of IFNc.

To verify these findings further, we used Nclsi-THP-1 cells

under the same experimental design for confocal microscopy

studies (Fig. 7B). The staining patterns for Stat1 were consistent

with the results of immunoblotting of the nuclear extracts (Fig. 7A).

Thus, Stat1 nuclear translocation in response to PMA was blocked

in nucleolin down-regulated cells, whereas in control-infected cells

Stat1 was effectively distributed to the nucleus of differentiating

cells (Fig. 7B, upper panels). Independently of the virus construct

and stimulation time used, IFNc stimulated THP-1 cells showed a

clear translocation of Stat1 into to nucleus (Fig. 7B, lower panels,

shown for 2 hrs IFNc stimulation).

Together, these findings demonstrate the requirement of

nucleolin for the nuclear transport of the transcription factor

Stat1 upon the monocyte differentiation process.

Figure 3. Formation of the Stat1-nucleolin complex in human monocytes is mediated by the M-CSFR. (A) Lysates of non-, control- or M-
CSFR- infected THP-1 cells were immunoblotted with anti-M-CSFR antibody (upper left panel). Autophosphorylation of M-CSFR in M-CSFR-expressing
THP-1 cells after stimulation with CSF-1 was detected by phospho-specific anti-M-CSFR IgG (upper right panel). (B) M-CSFR- expressing THP-1 cells
were stimulated with CSF-1 and taken for pull-down experiments. (C) Human peripheral blood-derived monocytes (Mo) were stimulated with CSF-1
and used for pull-down assay as indicated in above. Crude cell lysates were included to demonstrate equal protein expression of Stat1 and Ncl after
CSF-1 stimulation.
doi:10.1371/journal.pone.0008302.g003

Stat1-Nucleolin Complex
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Figure 4. Stat1 and nucleolin are translocated into the nucleus. (A) Primary blood-derived human monocytes were fixed, permeabilized, and
stained using polyclonal anti-nucleolin antibody, monoclonal anti-Stat1 antibody, and the corresponding Alexa coupled secondary antibodies;
simultaneous DNA labelling with DRAQ5 was performed to visualize the nuclear compartment. The merged confocal images of monocytes
stimulated with CSF-1 for indicated time points are shown. The lower panel shows phase contrast pictures. The images were acquired with a
resolution of 1024x1024 pixels with a MRC1024 confocal microscope (BioRad, Hercules, CA) attached to a Nikon Diaphot. All images were taken with
oil-immersed x63 objective, and were recorded for triple staining sequentially with detection wavelengths range for Alexa488, Alexa568 and DRAQ5
(Exlmax 646 nm). Pictures were merged using the Lasersharp software (BioRad). (B) The monocyte-to-macrophage differentiation was monitored by
FACS analysis. Cell surface expression of the macrophage-mannose recepor (CD206) in CSF-1 stimulated (dark grey curve) and non-stimulated
monocytes (open line) are shown. The broken line represents the FITC-isotype control.
doi:10.1371/journal.pone.0008302.g004

Stat1-Nucleolin Complex
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The Stat1-Nucleolin Interference Is Specific for the
Monocyte-to-Macrophage Differentiation Step and
Regulates the Expression of the Macrophage Scavenger
Receptor CD36

Nucleolin is highly expressed in cells of the hematopoietic

system and its important role for basic biological functions in

hematopoietic stem/progenitor cells has been recently demon-

strated [38]. To determine whether nucleolin-mediated Stat1

nuclear translocation is induced in a stage specific manner during

myeolopoiesis, we performed experiments using primary human

bone marrow-derived CD34-positive cells. Cells were stimulated

with CSF-1 to induce differentiation to the monocyte/macrophage

specific unilineage [41]. Differentiation was monitored by

expression of specific markers in FACS analysis. Though both,

nucleolin and Stat1 were constantly expressed over the whole

process of CD34+ cells differentiation, we observed nucleolin-Stat1

binding and nuclear translocation only at the stage of monocyte-

to-macrophage differentiation; nucleolin silencing impaired Stat1

nuclear accumulation (Fig. 8A). To further investigate the stage-

dependent specificity of this effect, we triggered PLB-985 cells to

differentiate to neutrophils and analyzed the nucleolin-Stat1

binding in pull-down assays. A high level of Stat1 expression

was detected in these cells, however, no binding of Stat1 with

nucleolin was observed (Fig. 8B).

To investigate functional consequences of this association for

the monocyte-to-macrophage differentiation process, we analyzed

the expression of genuine macrophage specific markers after

nucleolin silencing. As shown in Fig. 8C, in THP-1 cells, the

expression of CD11b and CD36 was significantly decreased by

about 50% in Nclsi- compared with control cells. The revealed

dependency of the scavenger receptor CD36 on nucleolin is of

special interest, because it has been reported recently, that CD36

serves as a specific Stat1 target gene regulating CD36-directed

foam cell formation in macrophages [42].

Collectively, these data indicate that nucleolin-Stat1 interaction is

specific to the monocyte-to-macrophage step and that intact nucleolin

is required to promote the monocytic scavenger receptor CD36.

Stat1 Nuclear Import Requires the Nuclear Localization
Signal of Nucleolin

Nucleolin shuttles between the cytoplasm and the nucleus, and

its NPC-related carrier function for karyophilic proteins depends

Figure 5. PMA induces binding of a Stat1-nucleolin complex to the GAS element. THP-1 cells were treated with IFNc for 2 h or with PMA
for 24, 48 or 72 h. Whole cell extracts were prepared and used for EMSA. Subunit composition of DNA binding complexes were analyzed by antibody
competition with antibodies directed against Stat1 and nucleolin, as indicated. Complex specificity was verified with oligonucleotide competition,
using 5-fold excess of GAS or H2K, respectively. White arrow indicates Stat1 homodimers; black arrow indicates a Stat1-nucleolin complex.
doi:10.1371/journal.pone.0008302.g005

Figure 6. Nucleolin gene silencing in THP-1 cells. (A) For each experiment, the nucleolin downregulation in the THP-1 by lentiviral gene
silencing was checked on protein level 3 and 6 days post infection by Western blotting of whole cell extracts with monoclonal anti-nucleolin antibody
(upper panel; lower panel demonstrates equal protein loading) or by FACS analysis of fixed and permeabilzed cells (B) or on mRNA level by
quantitative RT-PCR analysis (C).
doi:10.1371/journal.pone.0008302.g006
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PLoS ONE | www.plosone.org 6 December 2009 | Volume 4 | Issue 12 | e8302



on the intact NLS [18–20]. Our next question was to investigate a

role of the nucleolin NLS for the nucleolin-transmitted Stat1

nuclear transport in hematopoietic cells. We used lentiviral gene

transfer to overexpress in a dominant-negative fashion a NLS

deletion mutant form of nucleolin (Fig. 9A). The subcellular

localization of Stat1 was monitored by confocal microscopy; cell

nuclei were defined using specific nuclear markers. As shown in

Fig. 9B, non-differentiating cells showed bright cytoplasmic

staining for Stat1, in contrast to differentiating cells infected with

control virus or expressing full-length nucleolin. In these cells,

Stat1 accumulated in the nucleus. Stat1 remained almost

exclusively cytoplasmic only in the NLS-mutant expressing cells

stimulated for differentiation. Just a faint nuclear Stat1 staining

was occasionally visible, that reflected most likely a low level of

non-competed, wild type nucleolin transmitted transport. These

data indicate a requirement of the NLS sequence for the nucleolin-

directed Stat1 nuclear transport in hematopoietic cells.

Discussion

In this study, we identified a novel molecular mechanism for

Stat1 nuclear transport. This finding represents an alternative

pathway to the already reported Stat1 nuclear translocation

mechanisms, which is mediated by the shuttle protein nucleolin.

The NLS sequence of nucleolin is necessary for the correct

import into the nuclear compartment. The important result of

our experiments is that this mechanism is induced in a stage-

specific manner along the monocyte/macrophage pathway.

Nucleolin deficiency is associated with impaired expression of

monocyte differentiation markers, one of which, the scavenger

receptor CD36, is a Stat1 target gene and plays an important

role in pathophysiological events related to lipid uptake and

inflammation.

Many different mechanisms orchestrate the myeloid develop-

mental program, including cooperative gene regulation, protein-

protein interactions, and induction of cell cycle arrest. We

addressed a role of nucleolin in cell differentiation and identified

the transcription factor Stat1 as a novel and specific binding

partner of nucleolin in hematopoietic cells. Increasing evidence

point to multiple functions of Stat1 in myeloid cells mediating

inflammatory, proapoptotic and antiproliferative events [2,43,44].

These studies suggest that Stat1 may be an early transcription

factor activated during the monocyte maturation process upon

migration into extravascular tissues. They further indicate that

Stat1 does not trigger per se the differentiation process but rather is

a part of a developmental program leading to the regulation the

transcription of genes specific of mature macrophages. Our

findings are along these lines of evidence. We observed the

formation of the Stat1-nucleolin complex and its nuclear

translocation in the later phase of the monocyte-to-macrophage

differentiation. Our results support the studies of others reporting

Stat1 constitutive activation at day five of monocyte cultivation

[2], as well as changes in activation and DNA binding capacity of

LIL-Stat during monocyte maturation [45]. These data suggest

that the effects of Stats are tightly controlled according to the

status of cell differentiation. The underlying molecular events are,

however, sparsely explored.

Specificity of Stat-mediated cellular reactions is a complex

multistep process that explains the variety of Stat-mediated cellular

functions. This molecular machinery includes the primary stimuli,

activation of specific receptors and transactivation of co-receptors,

a cross-talk of intracellular signaling pathways and finally, Stat

nuclear translocation and DNA binding. Our study provides

evidence that Stat1 nuclear transport and DNA binding in a stage-

specific manner along the monocyte/macrophage pathway is

mediated by the shuttle protein nucleolin. Our results also suggest

that nucleo-cytoplasmic shuttle may play a significant role in the

modulation of gene expression that occur during monocyte

differentiation. The revealed requirement of nucleolin for Stat1

nuclear translocation was surprising, since the molecular mecha-

nisms of Stat1 nuclear transport have been extensively studied

before. Thus, Stat1 can associate with specific transport factors of

the importin family [46-48] or directly interact with the NPC [36].

Also an unusual nuclear import signal that specifically regulates

the nuclear entry of tyrosine-phosphorylated dimeric Stat1,

termed dimer-specific NLS (dsNLS), was identified [49]. Our

findings add to these schemes a novel mechanism for Stat1 nuclear

transport, which involves NLS sequence of nucleolin. NLS

containing proteins are transported into the nucleus by importins.

The classic mono- or bipartite NLS typically contains a cluster of

basic residues that is recognized and bound by the NLS receptor

importin-a, which is further associated through a separate domain

Figure 7. Nucleolin gene silencing prevents nuclear Stat1
translocation. (A) THP-1 cells were infected with nucleolin-si
lentiviruses (Nclsi) or empty viruses (con). Three days post infection,
cells were cultivated for further 72 hrs without or with 2 nM PMA or
stimulated with INF-c for 2 hrs. Nuclear extracts were prepared,
separated by SDS-PAGE, and Stat1 nuclear translocation was visualized
by Western blotting using monoclonal anti-Stat1 antibody (upper
panel). The purity of cell fractionation was proved by reprobing the
membrane with anti-histone antibody (nuclear marker, middle panel)
and anti-b-tubulin IgG (cytoplasmic marker, lower panel). (B) Inhibition
of the Stat1 nuclear translocation is shown by confocal microscopy
studies in Nclsi infected THP-1 cells stimulated as indicated. Cells were
fixed and permeabilized, and monoclonal anti-Stat1 antibody and
corresponding Alexa 488-coupled secondary IgG were used for staining
(green colour). Nuclear compartments were visualized by simultaneous
DNA labelling with DRAQ5 (red colour). The fluorescence cell images
were captured using a Leica TCS-SP2 AOBS confocal microscope (Leica
Microsystems). All images were taken with oil-immersed x63 objective,
NA = 1.4. Resolution 102461024.
doi:10.1371/journal.pone.0008302.g007
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Figure 8. Stat1-nucleolin complex is specific for the differentiation step of monocytes to macrophages and regulates
expression of the macrophage scavenger receptor CD36. (A) Peripheral blood CD34+ cells were stimulated with M-CSF, to induce
differentiation to the monocyte/macrophage specific unilineage. Nucleolin downregulation in the CD34+ cells was achieved by lentiviral
gene silencing. Cells were fixed, permeabilized, and stained using polyclonal anti-nucleolin antibody (green colour), monoclonal anti-Stat1
antibody (red colour), and the corresponding Alexa-coupled secondary antibodies; simultaneous DNA labelling with DAPI (blue colour) was
performed to visualize the nuclear compartment. The merged confocal images of Ncl-Stat1-DAPI triple stained CD34+ cells taken by a Leica
TCS-SP2 AOBS confocal microscope are shown in the right panel. (B) Nucleolin-GST pull-down assay with whole cell extracts from monocytic
THP-1 cells and PLB-985, differentiated to a neutrophilic phenotype by DMSO treatment. Eluates were analyzed by Western blotting; GST
glutathione agarose was used as control. Crude cell lysates show equal Stat1 expression in PLB-985 cells. (C) THP-1 cells, lentiviral Nclsi-
pLVTHM (Nclsi) infected or with empty lentiviruses (con) treated, were analyzed by FACS after induction of monocyte/macrophage
differentiation by PMA. Cell surface expressions of CD11b and CD36 are shown.
doi:10.1371/journal.pone.0008302.g008

Stat1-Nucleolin Complex

PLoS ONE | www.plosone.org 8 December 2009 | Volume 4 | Issue 12 | e8302



with importin-b [50,51]. Although it cannot be excluded that the

nucleolin-Stat1 complex interacts with importins, our cross-linking

experiments do not support this implication. Nucleolin, especially

the aminoterminal third, is highly phosphorylated [52,53], and the

efficiency of nucleolin shuttling depends on its phosphorylation

state [54]. There is a direct link between the grade of nucleolin

phosphorylation and the function of NLS for the nuclear

membrane passage through the NPC [18,19]. Therefore,

phosphorylation/dephosphorylation reactions might be a regula-

tory element of nucleolin localization. Stat1 phosphorylation as a

result of its activation upon monocyte differentiation has been

demonstrated [27,30,55]. Though we confirmed these observa-

tions of others, no specific requirement for phosphorylated Stat1

for nucleolin binding was determined (data not shown). Our

experiments with INFc suggest that Stat1 phosphorylation of itself

is not sufficient for Stat1 nuclear transport via nucleolin. In

agreement with this observation, nuclear translocation of other

Stats independently of tyrosine phosphorylation was recently

documented [56]. These intriguing issues need further studies.

Nuclear transport mechanisms play a fundamental role in

regulating the activity of transcription factors [57]. We provide

evidence that nucleolin, beyond mediating Stat1 import into the

nucleus, is a part of the Stat1-DNA binding complex. Transcrip-

tion factors can act as multiprotein complexes, whose components

may be involved in different aspects of transcriptional regulation.

Adaptor proteins and co-activators may serve for bridging the

specific transcription factor to the basic transcription machinery or

to facilitate the contact with histone acetylases and deacetylases,

which are required for the chromatin remodeling [22,58].

Interestingly, the N-terminal portion of nucleolin can bind to

DNA and histone H1 [59] and the C-terminus shows a helicase

activity [60]. Both could be responsible for the capacity of

nucleolin to remodel the chromatin structure, an important

process for the activation or repression of gene expression [61].

Our results show that association and nuclear translocation of

Stat1 and nucleolin is specific for the stage of monocyte/

macrophage differentiation. This association was found in

different human and murine cell lines and primary cells of

monocytic origin including hematopoietic progenitor cells stimu-

lated for monocyte-to-macrophage differentiation. Though being

expressed, Stat1 and nucleolin did not associate when cells were

stimulated to differentiate to neutrophils and in cells of non-

myeloid lineages. Furthermore, in our experiments using nucleolin

transgenes we show that IFNc-induced Stat1 nuclear translocation

does not utilize nucleolin and in particular its NLS sequence. Our

data support the possibility that the nucleolin-mediated Stat1

nuclear transport might represent a specialized pathway for the

time-coordinated control of Stat1-regulated gene expression in

myelopoiesis. From a clinical perspective, it would be interesting to

identify factors, which specifically induce this pathway in vivo. Our

results indicate that this pathway is most likely regulated via the

CSF-1/M-CSFR system. Conversely, we need to know whether a

paracrine or an autocrine mechanism is involved.

With the exception for some IFN-stimulated genes, the

cellular genes dependent on cytokine-activated Stat proteins

are poorly defined. Recent studies point to a novel function of

Stat1 in the pathogenesis of numerous diseases beyond

tumorigenesis and host defenses, such as atherosclerosis and

other cardiovascular disorders [62,63]. It has been shown that

myocardial ischemia and reperfusion induced a rapid activa-

tion of Stat1 [63,64]. This functional outcome from Stat1

activation was related to promoting apoptotic cell death upon

ischemia/reperfusion injury. A critical role of Stat1 as a sensor

responding to cellular stress was further demonstrated in vitro

and in vivo in endoplasmic reticulum stress-induced macro-

phage apoptosis and atherosclerotic plaque progression [65].

Stat1 may have an additional role in the early lesions that is

independent of macrophage cell death but rather related to

regulation of CD36 scavenger receptor expression and foam

cell formation [42]. These observations may explain, at least in

part, why Stat1 deficiency in apolipoprotein E-/- mice blocks

foam cell formation and early lesion development. Our results

suggest that nucleolin-directed Stat1 nuclear transport during

the course of macrophage maturation might represent a

specific pathway to regulate CD36 expression. Thus, we

observed that nucleolin silencing resulted in abrogation of

CD36 expression. The regulation of CD36 by Stat1 may be

important in other pathophysiological events involving CD36-

dependent lipid uptake and inflammation, such as diabetes

mellitus and the metabolic syndrome. Therefore, Stat1

inhibition could represent a target to reduce inflammation

and to prevent progression of these diseases. Elucidation of the

underlying molecular mechanisms of Stat1 regulation could

lead to enhanced understanding of these physiological and

pathophysiological processes. Our study indicates Stat1-

nucleolin interference as one of these mechanisms.

Figure 9. NLS sequence of nucleolin is necessary for the
nuclear translocation of Stat1. (A) For infection of monocytic
murine M1 cells, a full-length (FL) and a NLS sequence deleted (DNLS)
nucleolin cDNA from murine origin were used to generate lentiviral
particles. (B) Three days post infection with FL(Ncl), DNLS(Ncl), or empty
lentiviruses (con), M1 cells were stimulated for differentiation with TCM
or left non-stimulated. Cells were fixed and permeabilized, and stained
for Stat1 (monoclonal anti-Stat1 antibody and corresponding Alexa488-
coupled secondary antibody, green colour). Simultaneous DNA
labelling with DRAQ5 (red colour) was performed to visualize the
nuclear compartment. The translocation of Stat1 into the nucleus was
analyzed with a Leica TCS-SP2 AOBS confocal microscope.
doi:10.1371/journal.pone.0008302.g009
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Materials and Methods

Materials
High-quality commercial grade chemicals were purchased from

Sigma (St. Louis, MO), Merck (Darmstadt, Germany), and Roth

(Karlsruhe, Germany). Chemiluminescent signal enhancer was

obtained from NENTM Life Science Products, Inc. (Boston, MA).

The far-red fluorescent DNA dye DRAQ5 was from Biostatus

Limited Ltd. (Shepshed, UK). Aqua-Poly/Mount mounting media

was purchased from Polysciences, Inc. (Warington, PA). Oligonucle-

otides were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

Antibodies
Monoclonal antibodies for Stat1 protein were from BD

Transduction Laboratories (Lexington, KY). Monoclonal anti-

nucleolin antibodies were purchased from Medical and Biological

Laboratories, Co, Ltd. (Nagoya, Japan) and from Santa Cruz

Biotechnology (sc-8031). Polyclonal antibodies for Stat1 (sc-345),

M-CSFR, histone H1 and b-tubulin were from Santa Cruz

Biotechnology. Polyclonal anti-phospho-M-CSFR (Tyr723) anti-

body was obtained from Cell Signaling Technology, Inc. (Danvers,

MA). FITC- or PE-conjugated specific antibodies or isotype-

matched controls for FACS analysis were obtained from

Immunotech (Marseilles, France), BD Pharmingen (San Diego,

CA), and Serotec (Oxford, UK). Fluorescent Alexa 488- and Alexa

594-conjugated secondary antibodies were from Molecular

Probes, Inc. (Eugene, OR). Horseradish peroxidase-conjugated

secondary antibodies were purchased from Jackson ImmunoR-

esearch Laboratories (West Grove, PA) and Santa Cruz, Inc.

Cell Culture
Peripheral blood mononuclear cells (PBMC) were isolated from

healthy volunteers using Biocoll Separation Solution (Biochrom

KG Seromed, Berlin, Germany) according to the standard

protocol. After density gradient centrifugation, pure monocyte

fraction (purity approx. 92%) was obtained by using an indirect

magnetic labeling system (Monocyte Isolation Kit II, Miltenyi

Biotec Inc., Auburn, CA), as advised by the manufacturers.

Monocytes were cultured in RPMI 1640 medium (Biochrom)

supplemented with 10% fetal bovine serum, 2 mM L-glutamine,

100 U/ml penicillin and 100 mg/ml streptomycin. For stimula-

tion, 50 ng/ml CSF-1 (M-CSF) (R&D Systems, Minneapolis, MN)

was used for indicated time points.

The human U937 promyelocytic cell line (American Type

Culture Collection (ATTC), Manassas, VA) and the human

myeloid leukaemia cell line THP-1 (German Resource Centre for

Biological Material (DSMZ), Braunschweig, Germany) were

cultured in supplemented RPMI 1640 medium. Induction of

monocyte-to-macrophage differentiation was performed by cell

stimulation with 2–20 nM PMA (Sigma) for different time points.

M1 mouse myeloid leukemia cells (DSMZ) were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) (Biochrom)

supplemented with 10% fetal bovine serum, 2 mM L-glutamine,

100 U/ml penicillin and 100 mg/ml streptomycin. Monocyte-

macrophage differentiation was induced by cell stimulation with

conditioned media from THP-1 cells (TCM) as described [66].

The human myeloid leukemia cell line PLB-985 (DSMZ) was

cultured in supplemented RPMI 1640 medium. Induction of

neutrophil differentiation was performed by cell stimulation with

1.25% DMSO for 5 days.

Source of peripheral blood CD34+ cells were leukapheresis

products from healthy donors after stem cell mobilization with

recombinant granulocyte-colony stimulating factor (G-CSF). For

isolation of CD34+ cells, the CliniMACS system (Miltenyi Biotec,

Bergisch Gladbach, Germany) was used. The purity of the isolated

cells for CD34+ was .99%. The majority of the CD34+ cell

population (,80%) was double positive for the common leukocyte

antigen CD45 and the stem cell marker CD133. Cells were

cultivated in StemSpanRSFEM (Serum-free medium for expan-

sion and culture of hematopoietic cells) from StemCell Technol-

ogies Inc, supplemented with 100 ng/ml Stem Cell Factor (Cell

Systems), 50 ng/ml Flt3 ligand (Cell Systems), 20 ng/ml TPO

(thrombopoietin, Peprotech EC Ltd). Differentiation to the

monocytic lineage was initiated by 10 ng/ml human CSF-1

(M-CSF) (R&D Systems).

Plasmid Construction
The nucleolin constructs (DC(Ncl) aa284-aa707, and C(Ncl)

aa538-aa707) were generated from a human nucleolin cDNA

clone [53] and subcloned into the pSG5 vector (Stratagene, La

Jolla, CA). To generate the GST fusion proteins, the correspond-

ing constructs were cloned into the bacterial expression vector

pGEX-2T (Amersham Pharmacia Biotec Inc.) and expressed after

Isopropyl-1-thio-b-D-galactopyranoside (IPTG) induction in

DH5a E.coli strain.

Mouse nucleolin cDNA was obtained from the American Type

Culture Collection (ATCC; Manassas, VA). The sequence

encoding full-length mouse nucleolin was subcloned into pMT/

BiP/V5-His expression vector (Invitrogen, Carlsbad, CA). The

coding sequence for a FLAG epitope was introduced at the N-

terminus of nucleolin (pMT/BiP-N-FLAG-m-ncl) using Quick-

ChangeH site-directed mutagenesis kit (Stratagen, La Jolla, CA).

pMT/BiP-N-FLAG-m-ncl plasmid served as a template for

further cloning procedures. Constructs encoding N-terminus

FLAG-tagged wild-type mouse nucleolin and a mutant, in which

the NLS (encoded by nt 841 to 897) was deleted (DNLS) were

constructed and cloned in pcDNA3.1(+) vector (Invitrogen) using

standard PCR-mediated cloning procedures. For overexpression

of mouse nucleolin, lentivirus transfer vector pWPTS-adapter was

generated from the pWPTS-GFP vector by BamHI and SalI

cloning duplex. Full length mouse nucleolin cDNA and NLS

nucleolin mutant were transferred from pcDNA3.1(+) into

pWPTS-adapter in SalI and SpeI sites. Final construct

were designated as pWPTS-FL(Ncl) and pWPTS-DNLS(Ncl)

accordingly.

For nucleolin silencing, the target sites in human nucleolin

mRNA (Acc. #NM005381) for RNAi were determined using the

siRNA Selection Server (http://jura.wi.mit.edu/bioc/siRNAext/

home.php)41 and designed as oligonucleotides encoding short

hairpin RNAs (shRNAs). The following complimentary sequences

were selected:

Nuc 64

G AGG TAG AAG AAG ATA GTT

Nuc 719

A CGC TAA AGA AGC TTT AAT

For cloning in pLVTHM vector, the following duplexes were

used:

Nuc 64

CGCGTCCCCGAGGTAGAAGAAGATAGTTTTCAAGA-

GAAACTATCTTCTTCTACCTCTTTTTGGAAAT

CGATTTCCAAAAAGAGGTAGAAGAAGATAGTTTCTC-

TTGAAAACTATCTTCTTCTACCTCGGGGA

Nuc 719

CGCGTCCCCACGCTAAAGAAGCTTTAATTTCAAGA-

GAATTAAAGCTTCTTTAGCGTTTTTTGGAAAT

CGATTTCCAAAAAACGCTAAAGAAGCTTTAATTCTC-

TTGAAATTAAAGCTTCTTTAGCGTGGGGA
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For downregulation of nucleolin expression by a lentivirus

containing nucleolin-specific siRNA, pLVTH-Nclsi plasmid was

generated by ligation of the oligonucleotide duplex Nclsi in MluI

and ClaI sites of pLVTHM (Tronolab, Switzerland). Nuc 64

showed more extended silencing property and was therefore

selected for the next experiments.

For M-CSFR overexpression, the lentivirus pDEST-lenti

transfer vector was generated by blant ligation Gateway Cassete

rfa-verB (Invitrogen) in PmeI and SmaI sates of the pLV-

tRKRAB-Red vector (Tronolab). Entry clones for the transfer of

the M-CSFR were produced by cloning the PCR products in the

pENTR/D TOPO plasmid (Invitrogen). For M-CSFR overex-

pression, pEXPR clones were generated by site-specific recombi-

nation between pDEST-lenti and pENTR/D TOPO-M-CSFR by

Gateway LR Clonase Enzyme mix (Invitrogen).

Lentiviral Vector Production and Cell Infection
For experiments with M-CSFR constructs, pCMV-dR8.74,

pMD.2G (Tronolab) and pEXPR plasmids were co-transfected

(using ratio pLVTHM:pCMV-dR8.74:pMD2G = 3:2:1) into 293T

cells by PerFectin transfection reagent (Genlantis, San Diego, CA)

as recommended by manufacturer. After 48 h post transfection,

the viral particles containing cell supernatants were harvested,

filtered, concentrated, and stored at 270uC for future use.

pLVTH-Nclsi, pWPTS-FL(Ncl), pWPTS-DNLS(Ncl) vectors were

used instead pEXPR for nucleolin silencing or overexpression as

stated above.

For infection, 0.5–0.76106 cells/0.6 ml in the presence of 16 mg

polybrene and 0.4 ml virus stock were centrifuged (1,0006g,

30 min, RT) and incubated at 37uC with 5% CO2 for 4 to 5 hrs.

Cells were transferred into 2 ml for overnight and then into 6 ml

fresh RPMI medium for further cultivation.

Quantitative RT-PCR Analysis of Nucleolin
The total RNA samples was isolated from THP-1 cells using

QIAGEN QiaSpin miniprep kit and DNAse kit (QIAGEN, Hilden,

Germany), and real-time quantitative RT-PCR for nucleolin mRNA

was performed on a TaqMan ABI 7700 Sequence Detection System

(Applied Biosystems, Foster City, CA, USA). GAPDH was used as

a reference gene. The following oligonucleotide primers and probes

were used: GAPDH, 59-GAAGGTGAAGGTCGGAGTC-39

(sense), 59-GAAGATGGTGATGGGATTC-39 (antisense), 6-

FAM-CAAGCTTCCCGTTCTCAGCC-TAMRA (probe); Nu-

cleolin, 59- TCGCGAAGGCAGGTAAAAA-39 (sense), 59- CGAC-

CTCTTCTCCACTGCTATCA-39 (antisense), 59- 6-FAM-AAG-

GTGACCCCAAGAAAATGGCTCCTC-TAMRA (probe).

Cell Lysis and Immunoblotting
Non-stimulated cells were washed twice with PBS [phosphate

buffered saline], stimulated, adherent cells were detached by

adding 5 mM EDTA [ethylene diamine tetramine acetate] in

PBS. Cells were washed twice with ice cold PBS, resuspended in

lysis buffer (20 mM Tris-HCl, pH 8.0, 138 mM NaCl, 10%

glycerol, 2 mM EDTA, 1% Triton X-100, and protease inhibitors

1 mM PMSF [phenylmethylsulfonyl fluoride], 10 mg/ml aproti-

nin, 10 mg/ml leupetin, 0.3 mM sodium orthovanadate), and put

on ice for 10 min. Lysates were clarified by centrifugation at

13,000 rpm for 10 min. Western blotting was performed as

described elsewhere [67].

Fusion Protein Precipitation Assay (Pull Down Assay)
Nucleolin and/or Stat1 GST fusion proteins immobilized on

glutathione- agarose beads (Sigma) were used for affinity

precipitation. Cell lysates containing 800 to 1,500 mg protein

were incubated for 1 hr at RT or overnight at 4uC with

immobilized GST fusion protein. GST- matrix was used as

control affinity matrix. Precipitates were washed three times with

Tris-buffed saline containing 0.1% Tween20 (TBS-T). Precipitat-

ed proteins were eluted with Laemmli sample buffer containing

20 mM dithiotreitol (DTT), and were used for SDS-PAGE and

Immunoblotting with corresponding antibodies.

Immunoprecipitation and Cross-Linking
Immunoprecipitation studies were performed as described

[67,68]. For cross-linking, 2 mM of the bifunctional chemical

cross-linker bis(sulfosuccinimidyl) suberate (BS3, Pierce, Rockford,

IL) was added to cytosolic fractions for 30 min at RT. The

reaction was stopped by adding Tris to a final concentration of

50 mM and incubated for further 15 min. Cross-linked samples

were used for immunprecipitation and Western blotting.

Nuclear Extract Preparation
The cell pellet of approx. 3.56107 cells was washed,

resuspended in 1 ml hypotonic buffer (10 mM HEPES pH 7.9,

1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT) and incubated on

ice for 30 min. After sonication and centrifugation (6006g, 5 min,

4uC), the pellet was resuspended in 600 ml 0.25 M sucrose in

buffer A (50 mM Tris-HCl, pH 7.4, 5 mM MgSO4, 2 mM DTT),

laid over 400 ml 0.25 M sucrose in buffer A and centrifuged

(7006g, 7 min, 4uC). The pellet was resuspended in 6 ml 1.4 M

sucrose in buffer A and laid between 4 ml 2.2 M sucrose and 2 ml

0.25 M sucrose in buffer A. After ultracentrifugation (100,0006g

for 45 min at 4uC, Beckmann Sw40Ti), the pure nuclei were

resuspended in 40 ml of a low salt buffer (20 mM HEPES, pH 7.9,

25% glycerol, 20 mM KCl, 0.2 mM EDTA, 0.5 mM DTT). 30 ml

high salt buffer (20 mM HEPES, pH 7.9, 25% glycerol, 1.5 mM

MgCl2, 800 mM KCl, 0.2 mM EDTA, 0.5 mM DTT), were

added and incubated on ice for 20 min, followed by centrifugation

at 13,0006g (5 min, 4uC). The supernatant was dialyzed against

20 mM HEPES, pH 7.9, 20% glycerol, 100 mM KCl, 0.2 mM

EDTA, 0.5 mM DTT).

For crude nuclear extracts, the cell pellet of 1.56107 monocytes

was resuspended in 400 ml ice cold extract buffer (20 mM HEPES,

pH 7.9, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT) containing

10 mM KCl, placed on ice for 20 min and lysed in 0.5% Nonidet

P-40. After centrifugation, the pellet was resuspended in 50 ml ice

cold extract buffer containing 20% glycerol and 400 mM NaCl

and incubated at 4uC for 30 min. After centrifugation, crude

nuclear extracts were microdialyzed against PBS, used immedi-

ately or stored at 280uC.

Electric Mobility Shift Assay (EMSA)
Electrophoretic mobility shift assays were performed as

described previously [69]. Binding reaction was performed for

30 min at 25uC with 2–4 mg of whole cell extract. For antibody-

supershift and competition analysis protein extracts were pre-

incubated with 3 mg of Stat1 polyclonal or nucleolin monoclonal

antibodies for 30 min on ice. For oligonucleotide competition 5-

fold excess of unlabeled oligonucleotides were added to the

reaction. The following double-stranded oligonucleotides were

used:

GAS sense, 59-CATGTTATGCATATTCCTGTAAGTG-39

GAS anti-sense, 59-CATGCACTTACAGGAATATGCATA-

A-39

H2K sense 59-GATCCAGGGCTGGGGATTCCCCATCTC-

CACAGG-39
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H2K anti-sense 59-GTCCCGACCCCTAAGGGGTAGAGG-

TGTCCCTAG-39

Immunofluorescence Confocal Microscopy
Suspension cells, primary human blood monocytes or mono-

cytic cells (THP-1, U937, M1, CD34+), were pelleted on

microscope slides by using a cytospinner (Hettich, Tuttlingen

Germany, 2006g, 7 min). Stimulated, adherent cells were seeded

and cultured on glass coverslips. Cells were fixed, stained and

mounted as described by us previously [67]. Fc receptors were

blocked with Fc receptor blocking reagents (Miltenyi Biotech or

BD Biosciences). DNA staining was performed with far-red

fluorophore DRAQ5 (Biostatus Limited Ltd., 1:100, 15 min at

RT) or with DAPI [49,6-Diamidin-29-phenylindoldihydrochlorid]

(Invitrogen, 300 nM in PBS, 5 min at RT).

FACS Analysis
Phenotypic expression of CD11b, CD36, and CD206 was

quantified by FACS (FACscan; Becton Dickinson, Heidelberg,

Germany). Briefly, adherent cells were detached with 5 mM

EDTA in PBS. Cells were collected by centrifugation, incubated

with Fc receptor blocking reagents and stained with the

corresponding FITC- or PE-conjugated specific antibody or the

isotype matched control. For quantitative analysis of nucleolin,

cells were fixed with 2% paraformadehyde in PBS for 15 min at

RT and permeabilized with an ice-cold mixture of methanol and

acetone (1:1) at 220uC for 20 min. After incubation with

monoclonal anti- nucleolin IgG for 30 min at RT, the

Alexa488-conjugated secondary antibody was added for further

15 min at RT. Measurement of mean fluorescence intensity (MFI)

and analysis of data were done using Cell Quest Software. 10,000

events per sample were collected.
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