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Abstract

Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types.
To investigate gene networks operating in pluripotent ES cells and their derivatives, the ‘‘Functional Genomics in Embryonic
Stem Cells’’ consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings
representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have
organized the results in an interactive database with a number of features and tools. Specifically, we have generated
clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we
have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we
have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence
Tags; transcripts have been arranged in ‘‘Expression Waves’’ and juxtaposed to genes with opposite or complementary
expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell
differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways;
and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links
to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the
biology of ES cells.
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Introduction

Stem cells hold great promise for tissue repair after injury or as a

result of disease[1]. Studies in animal models and clinical trials

indicate that stem cells and their progeny may replace damaged

tissue improving organ recovery and function [2,3]. For this

reason, understanding the programs controlling self-renewal and

differentiation of stem cells may facilitate the development of tools

to unlock their regenerative potential. To this end, mouse

embryonic stem (ES) cells offer an accessible and pertinent model

system because they give rise to many different cell types in a

reproducible manner, can be propagated practically indefinitely,
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have relatively stable karyotypes, and are easy to genetically

manipulate [4–7]. Moreover, ES cell differentiation in vitro

recapitulates events that take place during early embryonic

development including the formation of the three germ layers of

ectoderm, mesoderm and endoderm, and the emergence of

endothelial, hematopoietic, cardiac, neuronal and hepatic or

pancreatic cells [8,9].

Functional studies have highlighted the critical roles of genes

such as Oct4 (Pou5f1), Nanog and Sox2 in the maintenance of ES

pluripotency and suppression of differentiation pathways [10–19].

Chromatin immunoprecipitation and chip analyses revealed that

both active and silenced genes in ES cells are directly bound by

one or more of these three proteins [17,19]. The recent discoveries

of new pluripotency factors including Klf4, Sall4, Zfp206, Esrrb,

Tcl1, Tbx3 and Zfx suggest that the expansion and fate of ES cells

follows a complex course requiring the coordinated action of a

number of yet to be characterized genes [20–26].

The links between the many genes involved in the maintenance

of pluripotency and the regulation of ES cell differentiation

programs are not well characterized. Microarray studies have the

potential to piece together groups of co-regulated genes and thus

lead to the discovery of novel components of genetic pathways in

ES cells. In recent years, a number of genome-wide approaches

have identified transcripts present in mouse and human ES cells or

their differentiated derivatives using a variety of gene expression

profiling methods [24,27–32]. This wealth of information also

underscored a degree of variability and ‘‘biological noise’’ among

data sets [33,34].

The ‘‘Functional Genomics in Embryonic Stem Cells’’ consor-

tium comprising 20 research groups (acronym FunGenES; http://

www.fungenes.org) has analyzed the transcriptome of ES cells

under a series of diverse stimuli during growth expansion and

differentiation. Besides information gathered to answer specific

experimental questions, as determined by the interests of

individual partners [35–41], the collective data offered the

opportunity to search for coordinated gene expression patterns

in a systematic exploration of the mouse ES transcriptome under a

battery of different experimental settings, thus minimizing possible

site-specific artifacts. The results have been organized in an

interactive, open-access database with a number of novel features

and search tools to promote studies into the biological properties of

embryonic stem cells.

Results

Coordinated analysis of the mouse ES cell transcriptome
The FunGenES consortium collected gene expression profiling

data from mouse ES cells in a coordinated fashion by streamlining

techniques and standardizing experimental protocols among

partners. To this end, consortium members selected three ES cell

lines (CGR8, E14TG2a and R1) for common use; ES cell clones

were karyotyped and tested by alkaline phosphatase staining

before being distributed to most of the consortium groups. A

number of laboratories shared serum batches and used a common

LIF source. Finally, RNA samples were prepared following the

same procedure and subsequent microarray analyses were

performed in a central facility using Affymetrix Mouse 430 v.2

arrays.

The configuration of each of the eleven individual experiments

and the RNA samples collected are summarized in Table 1. In

brief, the studies consisted of seven analyses on gene regulation in

undifferentiated ES cells, focusing on LIF targets, Stat3 and PI3K

regulated genes, as well as global gene expression changes through

epigenetic mechanisms; and, four studies where ES cells were

allowed to differentiate in monolayers or as embryoid bodies.

Differentiation took place either in control culture media, or in the

presence of various agents including retinoic acid (RA), Fibroblast

Growth Factor-2 (FGF2) and Wnt pathway activators. Detailed

descriptions of the individual experimental settings are included in

the Supplemental File S1. The total number of tested conditions

was 67, each performed in up to six, separate, biological replicates

using a total of 258 Affymetrix arrays.

Comparison of gene expression profiles showed a low number

of differentially expressed transcripts among the three ES cell lines.

Using 5% false discovery rate in ANOVA calculation in any of the

3 comparisons (CGR8 vs. E14TG2a vs. R1), there are 137 genes

(0.9% of the analyzed transcripts) that show a 2-fold difference or

higher in expression levels among the three lines; 34 of these genes

Table 1. Outline of the eleven experimental data sets in the FunGenES study.

Samplea Experimentb ES clonec Conditionsd Repeatse

INS-2 Comparison of ES clones E14TG2a/CGR8/R1 3 5

INS-1 Stat-3 targets in ES cells E14TG2a 5 4–6

CNRS-UMR-5164 LIF targets in ES cells CGR8 6 5

UOB-1 PI3-K targets in ES cells E14TG2a 2 5

UOB-2 PI3-K targets in ES cells E14TG2a 6 3

IMBB-1 TSA effects on ES cells CGR8 3 3

TUD-1 Tag effects on ES cells E14TG2a 6 3

UKOE-1 Standard ES differentiation CGR8 9 3

AVEF-1 ES differentiation under neurogenic conditions E14TG2a 11 4f

CNRS-UMR-6543 ES differentiation under adipogenic conditions CGR8 9 3

IPK-1 ES differentiation favoring the pancreatic lineage R1 7 5

a: experiment abbreviation.
b: short description of individual experiment.
c: ES cell line used in the corresponding experiment.
d: number of different conditions analyzed.
e: number of independent replicates.
f: four replicates except AVEF-1 eb4 (two repeats).
doi:10.1371/journal.pone.0006804.t001
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are .2-fold higher or lower expressed in E14TG2a, 5 in CGR8

and 11 in R1 cells.

Organizational design and special features of the
FunGenES database

To enhance the analytical power of the collected information,

facilitate data mining and provide public access of the consortium

results to the scientific community, the expression data have been

organized in an open, interactive database (http://biit.cs.ut.ee/

fungenes/) with a number of original features and tools (Figure 1).

These include: a) Global Clusters that consist of a small, tight

subset of genes that are co-expressed under the entire spectrum of

experimental conditions; b) Time Series of gene expression

profiles during successive days of standard ES cell differentiation;

c) Specific Gene Classes based on hierarchical clustering of

transcriptional factors and ESTs; d) Expression Waves of genes

with characteristic expression profiles during ES cell differentia-

tion, juxtaposed to waves of genes that behave in the exact

opposite way; e) Pathway Animations that illustrate dynamic

changes in the components of individual KEGG signaling and

metabolic pathways viewed in time-related manner; and, f)

Search Engines to display the expression pattern of any

transcript, or groups of transcripts, during the course of ES cell

differentiation, or to query the association of candidate genes with

various FunGenES database clusters. In addition, there are cross-

links to annotate and characterize these genes in the context of

other relevant genomic and stem cell resources.

Gene expression profiles are provided for all RNA samples

combined, or separately for the CGR8 and E14TG2a ES cell

lines. The list of genes belonging to a cluster together with the

heatmaps of individual transcripts, appear by clicking on the

corresponding cluster. The heatmaps of gene clusters or single

genes can be displayed in different color codes or configured using

a range of analytical parameters using the ExpressView tool. With

subsequent marking of any gene, or groups of genes, it is possible

to zoom in to the clustering visualization. In addition, when a

subset of genes is selected, it is possible to access functional analysis

and other relevant resources via the URLMAP link aggregator.

This provides crosslinks to external resources such as NCBI

Entrez, Ensembl, iHOP, Pubgene, MEM - Multi Experiment

Matrix, and a number of genomics and stem cell databases. There

is also a link to the g:Profiler tool that provides functional

annotation to assess the biological classification of transcripts with

specific expression patterns [42]. Terms of description in g:Profiler

include GO categories [43], KEGG [44] and Reactome pathways

[45], miRBase microRNA information [46], and TRANSFAC

motifs [47]. In addition to functional explanations, g:Profiler

provides convenient tools for dealing with different gene identifiers

and finding orthologs from other organisms.

Identification of gene sets with similar expression profiles
across all tested experimental conditions

The synchronized genomic analyses among consortium partners

presented the opportunity to search for coordinately expressed

genes, either during ES cell differentiation, or in response to

various stimuli. Towards this goal, we mined the genomics data to

identify sets of genes, the expression of which performed in the

same way over the entire spectrum of experimental conditions.

In order to facilitate the interpretation of the bioinformatic

output, and enhance the biological significance of the computa-

tional data, we pre-selected probe sets corresponding to previously

characterized genes. The initial focus on known genes with

Figure 1. Outline of the FunGenES database. The database home site is separated in six parts. The upper row views provide entry to different
ways the FunGenES data sets have been organized: in clusters using the entire 67 experimental conditions (Global Clusters, top left); according to
time of expression (Time Series) in 50 (Concise) and 200 (Analytical) clusters using a subset of experimental samples representing conditions without
additional stimuli (top middle); or depending on gene class, i.e., transcriptional regulators or ESTs (Specific Gene Classes, top right). In Time Series and
Specific Genes Classes, the expression profiles at various differentiation time points are also provided separately for CGR8 and E14TG2a cells. The
bottom row consists of three tools that offer: detailed organization of specific gene expression patterns (Expression Waves) during the differentiation
process (bottom left); animation of KEGG pathways organized by successive days of differentiation (Pathway Animations, bottom middle); and, a
search engine to obtain the expression of any transcript or groups of transcripts in the Affymetrix 430 v.2 arrays during the ES cell differentiation
process (bottom right). In all entry points, buttons provide a ‘‘Description’’ of how the data have been organized and the ‘‘Methods’’ used to
construct the various tools.
doi:10.1371/journal.pone.0006804.g001
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common expression profiles across many conditions, allowed us to

interpret differences between conditions, as well as to identify

specific core groups of genes that could serve as anchor-points for

mapping gene function in future analyses. Specifically, we applied

exclusion criteria to screen out transcripts without annotation and

of unknown origin, as well as hypothetical transcripts or proteins.

This selection reduced the number of transcripts from 45,101 to

32,020. We then removed redundant probe sets, and probe sets

that showed minor differences in expression levels across all tests

setting the standard deviation of the log2 signal over 67 conditions

to less than 0.45. The selection criteria brought the number of

transcripts used for cluster analysis to 5,959.

Unsupervised hierarchical clustering of the 5,959 genes, using

100 random permutations, gave rise to 115 groups, containing a

total number of 2,855 transcripts, with a probability of 95% or

higher that clustering was not random (Supplemental File S2).

Eighteen clusters had .20 transcripts, fifteen clusters contained

between 10–19 transcripts, whereas the remaining eighty two

clusters had 3–9 members. The heatmaps of the eighteen largest

clusters with .20 transcripts are shown in Figure 2. The heatmaps

and the complete list of genes belonging to each cluster, ordered

by cluster size, are available in Supplemental File S3 and in the

FunGenES database under the heading ‘‘Global Clusters’’.

The functional annotations of all the clusters with $10

transcripts, which were obtained using the on GO classification

categories of the g:Profiler tool for all the genes in each cluster, are

shown in Table 2 (for downregulated genes during ES cell

differentiation) and Table 3 (for upregulated genes). Inspection of

the data illustrates that in many instances, hierarchical clustering

grouped genes that have been functionally associated with

particular developmental and/or cellular processes. For example,

clusters containing genes that are upregulated during the course of

ES cell differentiation (Table 3) include in order of time of

expression: cluster 30 that represents genes which take part in the

formation of the three embryonic germ layers during gastrulation,

i.e., Goosecoid, Cerberus like 1 homolog, Wnt3, Mesp1, Mixl1, mEomes

and Even-skipped 1; cluster 15 containing molecular regulators of

early mesoderm development including Bmp2, Bmp5, Msx1, Msx2,

Cripto, Tbx20, Hey2, Smad6, Vegfr2 (Kdr), Foxf1 and Hand1; cluster

20, which comprises regulatory and structural genes linked to

Figure 2. Global hierarchical clustering analysis of the FunGenES microarray data. The average heatmaps of the eighteen largest clusters
with at least 20 members are displayed. Hierarchical clustering organized samples according to differentiation stages, with undifferentiated ES cells
and early differentiation states at the left and progressively more differentiated states toward the right. The cluster number is depicted on the left
side, the cluster size, i.e., the number of transcripts in the cluster, is shown on the right. Heatmap colors range from cyan (very low or no expression)
over black (low/middle) to yellow (high expression levels). The names of the 67 RNA samples are indicated on the top. The description of the
acronyms and the experimental conditions for each sample are provided in Table 1 and in Supplemental File S1, respectively. The names of the ES cell
clones used in each experiment and the time of RNA isolation during the ES cell differentiation process are coded with bars above the heatmaps.
Explanatory notes of the codes are indicated below the heatmaps.
doi:10.1371/journal.pone.0006804.g002
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hemopoiesis such as Gata1, Nfe2, Klf1, Tie1, hemoglobins (Hba-x,

Hbb-b1) and Glycophorin A; cluster 12, which is rich in genes

involved in cardiac development, e.g., Mef2c, Myl4, cardiac Troponin

T2, Tropomodulin 1, myosin binding protein C, Bves, Angiopoietin 1 and

Angiopoietin 2; and, cluster 4, which consists mostly of genes

associated with neuronal development and differentiation, for

example, Neurog1, Neurog2, Olig2, Nkx6.1, Neurod4, Pou3f2, Pou3f4,

Cacna2d3, Cacng4, Kcnq2 and EphA5. The average expression

pattern of all the genes in these clusters is depicted in Figure 3A.

Taking into account that ES cells are isolated at embryonic day

3.5 post fertilization, the sequential appearance of genes specific

for gastrulation, mesoderm formation, hemopoiesis, cardiopoiesis

and neurogenesis during ES cell differentiation follows the timing

of comparable developmental stages in embryonic development.

For example, the transient expression of cluster 30 genes at day 3

in vitro, which corresponds to embryonic day E6.5 (3.5+3), matches

the expression timing of genes such as Cerberus-like 1 and Wnt3 in

vivo [48,49]. In a similar manner, the induction of hematopoietic

(cluster 20, day 3.5+4 = E7.5) and cardiovascular-specific (cluster

12, 3.5+5 = E8.5) genes follows the chronological order of the

appearance of blood islands and the formation of the heart tube

during embryonic development [50,51].

In contrast to the complex induction scheme of clusters

representing upregulated genes, clusters containing genes that

decrease upon differentiation form fewer clusters that fall mainly in

two categories, of genes suppressed early, at the onset of

differentiation (clusters 3 and 18), and of genes downregulated in

more gradual fashion (clusters 1, 8 and 13; Figure 3B). Downreg-

ulated clusters include mostly genes that take part in cell cycle,

proliferation and metabolism, as well as genes that have been

implicated in the maintenance of ES cell pluripotency (Table 2). For

instance, Cluster 1 contains genes such as cyclin A2, cyclin B1, cyclin

E1, cyclin F, polymerase alpha 2, RNA polymerase II polypeptide H, and

RNA polymerase III polypeptide G, whereas Cluster 3 genes include

Nanog, Sox2, Pou5f1 (Oct4), Klf2, Zpf42 (Rex1) and Esrrb.

The validation rate of the microarray expression profiling data

was 90.7%, based on results obtained independently in eleven

consortium laboratories. In brief, 330 of 364 genes, tested by

quantitative or conventional PCR, gave comparable expression

patterns to the data obtained by microarray analysis. A

representative comparison of expression profiles obtained by Q-

PCR and array analysis for fifteen genes, belonging to five of the

clusters depicted in Figure 3, is shown in Supplemental File S4.

Since there is a higher than 95% chance that cluster

assignments are accurate (Supplemental File S2), and our

validation analysis shows that 90.7% of the array expression

patterns match the RNA analysis results using other techniques

(e.g., Q-PCR), we estimate that more than 86% of the genes in a

cluster follow the corresponding average expression profile. It is

likely that these genes are components of related molecular or

cellular pathways, or they might be targets of common regulatory

mechanisms, or both [52–54]. Next to well-characterized genes,

clusters often contain transcripts the function of which is poorly

understood. Our analysis predicts that the latter participate in the

same biological processes as the known genes in the corresponding

clusters – thus providing a starting point to study the function of

poorly characterized transcripts.

Time Series and Specific Gene Classes of the FunGenES
Database

To better visualize changes in gene expression programs during

differentiation, we performed k-means clustering analysis, followed

Table 2. Functional annotation of Global Clusters of
downregulated genesa.

Cluster Gene Number Functional Annotation

1 593 Cellular Machinery: Cell Cycle, Organelles Nucleic
Acid Metabolism, Synthesis and Processing

3 349 Transcriptional Regulation, Metabolism

8 62 Cell Cycle, Organelles, Nucleic Acids metabolism
and binding

13 36 Cell Cycle, Signal transduction, Nucleic Acids
metabolism, Transcription

18 23 Cell Cycle, Meiosis

21 14 No strong annotation: Signal Transduction

24 13 Ribosomal proteins

25 13 Cell Cycle, Replication

27 12 No strong annotation

28 12 t-RNA biosynthesis

33 10 No strong annotation

a: clusters containing 10 or more genes that are downregulated during ES cell
differentiation.
doi:10.1371/journal.pone.0006804.t002

Table 3. Functional annotation of Global Clusters of
upregulated genesa.

Cluster Gene Number Functional Annotation

2 423 Development, Morphogenesis, Signal
transduction, Apoptosis

4 193 Neurogenesis, Development, Morphogenesis

5 129 No strong annotation

6 113 No strong annotation: Cell adhesion, Signal
transduction, Neuronal

7 101 Cardiovascular development, Branching
morphogenesis, extracellular matrix

9 58 Extracellular matrix biosynthesis, Cell adhesion

10 43 Immune response

11 42 Extracellular matrix biosynthesis

12 41 Cardiovascular development

14 33 Development, Morphogenesis, Transcriptional
regulation

15 30 Mesoderm development, Branching
morphogenesis, Vascular development

16 28 Extracellular matrix, Collagen pathway

17 27 Extracellular matrix, Chemokines, Cell adhesion

19 18 No strong annotation: Cell proliferation, immune
response

20 17 Hematopoiesis

22 14 No strong annotation: Signal Transduction

23 13 No strong annotation

26 13 No strong annotation

29 11 No strong annotation

30 10 Gastrulation, Cell migration

31 10 Calcium binding, structural proteins

32 10 No strong annotation

a: clusters containing 10 or more genes that are upregulated during ES cell
differentiation.
doi:10.1371/journal.pone.0006804.t003
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by hierarchical clustering, to group genes by their timing of

induction or suppression during the normal ES cell differentiation

process. For this purpose, we used the data from a subset of

consortium samples representing untreated states without addi-

tional stimuli (26 conditions listed in Supplemental File S5) and,

we included transcripts with significant differential expression

among samples (standard deviation.0.45). The resulting ‘‘Time

Series’’, containing 8,211 genes, have been organized in 50

Concise (Figure 4) and 200 Analytical clusters.

The ‘‘Time Series’’ clusters expanded the number of genes that

follow a specific expression pattern revealed in the previous global

hierarchical clustering. For example, cluster 5 of the concise

‘‘Time Series’’, which consists of transiently induced genes around

day 3 of differentiation, similarly to Global Cluster 30, contains the

same transcripts, but in addition, it also includes T-brachyury, Axin2,

Mesp2, Fgf8, Wnt8a, Sp5, Sp8, Follistatin, Mix1 and Lim1. These

genes have been also implicated in the gastrulation phase of

embryogenesis [55] indicating that ‘‘Time Series’’ clusters provide

a comprehensive collection of genes expressed at specific stages of

ES cell differentiation and early embryonic development.

To assist searches of interconnected circuits of gene expression

regulators, we carried out clustering of genes related to

transcriptional activation (Figure 4). Finally, we analyzed ESTs

separately to distinguish the ones that are expressed in ES cells or

during the differentiation process. From approximately 12,000

ESTs, only 1,027 show a specific expression pattern (8.6% of all

ESTs present in the Affymetrix 430 2.0 microarray). This is in

contrast to known genes where 21% have a particular pattern,

possibly because a number of ESTs included in the microarrays

are cloning artifacts. However, the remaining 1,027 ESTs might

represent novel transcripts with potentially important functions in

stem cell biology and embryonic development. The 1,027 ESTs

have been grouped in 50 clusters based on their timing of

appearance (Figure 4). About half are expressed specifically in ES

cells, the rest in ES cell derivatives. Transcription factor and EST

clusters can be accessed through the ‘‘Specific Gene Classes’’

window of the FunGenES Database.

Gene ‘‘Expression Waves’’
To better illustrate and map co-regulated genes with different

activation and deactivation profiles, the levels of every transcript

have been assigned to graphs of ‘‘Expression Waves’’ that follow a

particular, predetermined, expression pattern (Figure 5). The

names of genes belonging to the corresponding ‘‘Expression

Wave’’ are included below the graph. The graph and gene content

representing transcripts expressed in the opposite manner is

available on the same page for side-by-side comparisons. In this

way, it is possible to search the database for groups of potentially

interconnected genes as a starting point to decipher regulatory

networks of transcription factors, signaling molecules and

membrane receptors, or for indications of genes that might be

co-regulated by the same genetic pathways.

Search Engines of the FunGenES database and links to
external databases

To maximize the analytical power of the database and integrate

it with the existing genomic and stem cell resources, we included

the ‘‘Study your Gene(s) of Interest’’ search engine. For any gene

of interest, or group of genes, it provides via URLMAP links to

display the expression profile across the entire spectrum of the

FunGenES data. This provides electronic analysis of the

expression profile of any gene(s) in mouse ES cells and during

the subsequent stages of differentiation by using standard

abbreviated gene names, Affymetrix probe set IDs, or any

identifier supported by the Ensembl database. An example of

the expression profiles for the 19 members of the Wnt protein

family of morphogens in ES cells and during the first 10 days of

differentiation, obtained using the FunGenES search engine, is

shown in Figure 6. The search tool also provides a fast assessment

of expression profiling data obtained by RT-PCR or other

techniques. The design allows easily addition of future data sets to

expand and update the analytical power of the search engines.

In addition to the visualization of expression profiles during ES

cell differentiation, the search engine provides links to analyze the

Figure 3. Average expression profiles of selected Global Clusters. A. Average expression levels of Global Clusters 4, 12, 15, 20 and 30 that
contain up regulated transcripts during ES cell differentiation. The clusters consist of genes specific for gastrulation (cluster 30), mesoderm formation
(15), hemopoiesis (20), cardiopoiesis (15) and neurogenesis (4). The sequential appearance of genes specific to early developmental stages matches
the timing of their induction during embryonic development. B. Average expression levels of all the transcripts in Global Clusters 1, 3, 8, 13 and 18
containing genes the expression of which decreases upon differentiation. Expression in Clusters 3 and 18 is suppressed early, at the onset of
differentiation, whereas the expression of genes in clusters 1, 8 and 13 declines in gradual fashion. Clusters 1, 3, 8, 13 and 18 include genes that take
part in cell cycle, proliferation and metabolism, as well as in self-renewal and maintenance of ES cell pluripotency.
doi:10.1371/journal.pone.0006804.g003

FunGenES Database
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selected genes using many publicly available tools and resources.

As mentioned above, such links include external resources such

as NCBI Entrez, Ensembl, iHOP, Pubgene, MEM - Multi

Experiment Matrix, and a number of genomics and stem cell

databases. Moreover, the g:Profiler toolset provides functional

annotation.

Pathway Animations
To examine the action of individual pathways in toto during ES

cell differentiation, the FunGenES database was given an

additional feature called ‘‘Pathway Animations’’ that depict

dynamic changes in specific genetic, signaling or metabolic

pathways viewed in time-related animations based on the KEGG

annotation [44,56]. The resource also offers a set of tools that

allow the users to reanimate the graphs by selecting specific time

points and/or subsets of pathway components.

Figure 7 depicts a stationary view of the KEGG pathways for

‘‘Cell Cycle’’ and ‘‘Apoptosis’’ at three time points; it appears that

ES cells (day 0) have higher numbers of expressed genes involved

in cell cycle (rectangles in red color) compared to differentiated

cells (day 10). Almost all of the genes expressed at day 0 have been

silenced by day 10 (green) and replaced by a new set of genes. The

extensive changes in the expression profile from ES cells (day 0) to

differentiated cells at day 10 are suggestive of a broad overhaul of

the self-renewal machinery. The ‘‘Cell Cycle’’ animated pathway

shows that genes encoding regulators of DNA replication are

expressed at high levels in pluripotent, self-renewing ES cells and

are progressively down regulated during differentiation. They

include genes of the origin of replication complex (orc), the

minichromosome maintenance (mcm), and the cell division cycle

(cdc) families. Genes involved in DNA damage control and

inhibition of DNA synthesis [49], in particular Atm, Chk1 and

Chk2, are also highly expressed in ES cells, but decline during

differentiation. These changes are indicative of the active

replication machinery and the tightly controlled replication fidelity

in proliferating ES cells [57–59].

Undifferentiated ES cells are also characterized by elevated levels

of transcripts encoding the G1/S transition-promoting complex

Figure 4. Time Series and Specific Gene Classes of the FunGenES database. Heatmaps of the 50 concise clusters for All Genes, Transcription
Factors and ESTs according to their timing of induction or suppression during the normal ES cell differentiation process. Day 0 represents
undifferentiated ES cells, days 1–7 and 10–11, the corresponding differentiation days. The first column to the right of each cluster is the cluster
number (cluster ID); the second column is the number of genes that belong to the cluster (cluster size).
doi:10.1371/journal.pone.0006804.g004
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Figure 5. The ‘‘Expression Waves’’ tool of the FunGenES database. A. Partial snap shot of the ‘‘Expression Waves’’ window that depicts
detailed specific expression patterns of genes during consecutive days of ES cell differentiation. Numbers in individual panels represent the number
of genes the expression of which matches the specific profile. For example, the top left panel (red asterisk) represents 93 genes that become down
regulated as soon as differentiation begins. After clicking on any of the panels, for example on the top left panel marked with a red asterisk, the
expression profiles of the individual genes that follow the corresponding pattern as well as their names appear in a new window (as shown in B). B.
Individual expression profiles of the 93 genes marked with a red asterisk in A are shown in the top panel. The graph and gene content representing
transcripts expressed in the opposite manner is available on the same page for side-by-side comparison (lower graph on the left). Clicking on this
graph opens a new window with the corresponding genes (bottom panel). Representative examples of genes belonging in the depicted Expression
Waves are shown on the right of the graphs. Using the two link buttons on the left, it is possible to further study the gene list of a particular ‘‘wave’’ in
the context of publicly available databases, or view the gene expression profiles in ExpressView.
doi:10.1371/journal.pone.0006804.g005
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Figure 6. The FunGenES database Search Engine for gene expression profiles during ES cell differentiation. Expression profiles of the
19 Wnt genes during ES cell differentiation with the corresponding Affymetrix IDs using the ExpressView feature. Wnts have grouped in members
expressed during early differentiation stages (Wnt2b, Wnt3a, Wnt6, Wnt8b, Wnt9b, Wnt10b, Wnt16); transiently around day 3 of differentiation (Wnt3,
Wnt5b, Wnt8a); or, Wnt genes that appear primarily after day 4 (Wnt2, Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt9a, Wnt11). The heatmaps show weak
expression of Wn1 and Wnt10a throughout differentiation and high levels of Wnt7b in undifferentiated ES cells. Besides Affymetrix IDs, searches can
be performed with any standard gene name or identifier, as well as by mixing ID types. The expression profiles in different ES cell lines can be
obtained by selecting the corresponding dataset. A number of options (top right) allow custom configuration of data analysis and presentation.
doi:10.1371/journal.pone.0006804.g006
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cyclin E1:Cdk2 and, by contrast, low levels of transcripts encoding D-

type cyclins and Cdk4/6 inhibitors of the INK4 family (p15, p16,

p18, p19; Figure 7). Differentiation is associated with a decrease in

cyclin E1 and a concomitant elevation in D-type cyclins and cdk

inhibitor transcripts [57,60]. These results are likely due to the

progressive switch from a cyclin E-based autonomous cell cycle,

which characterizes self-renewing ES cells, to the D-type cyclins/

Retinoblastoma (Rb) protein-regulated somatic cell cycle [61].

Conversely, few pro-apoptotic genes are expressed in ES cells

(day 0; most boxes appear in green), but many are gradually

induced during the differentiation process showing the exact

opposite pattern from the genes involved in cell proliferation

(Figure 7). As observed for cell-cycle genes, there is minimal

overlap between apoptosis-associated genes expressed at days 0

and 10. This strikingly complementary pattern suggests a

reciprocal interrelationship between the balance of pro- and

anti-apoptotic genes in ES cells and their differentiated progeny.

Discussion

Functional analyses using loss-of-function and protein-protein

interaction approaches, as well as bioinformatics tools, have began

to piece together the regulatory networks active in ES cells [24,62].

Furthermore, genome-wide studies, combining chromatin immu-

noprecipitation (ChIP) and array hybridization (ChIP-on-chip),

have revealed that both active and silenced genes are directly

bound in ES cells by one or more of the core pluripotency factors

Oct4, Sox2 and Nanog [17,19,63].

Figure 7. Snap shots from the animated Cell Cycle and Apoptosis KEGG pathways. The images depict day 0 (undifferentiated ES cells), day
4 and day 10 of differentiation. Each box in a pathway box represents a gene or gene family that can be visualized by marking the box during
animation. The different family members are represented with juxtaposed vertical rectangles within the same box. For genes having multiple probe
sets in the Affymetrix microarray, the corresponding gene rectangle is divided horizontally with each line depicting the expression level of an
individual probe set. Red color marks expressed genes and green color indicates absence of detectable expression. Color intensity reflects expression
levels. The table below lists the genes from the Cell Cycle and Apoptosis KEGG pathways that are expressed at day 0 and day 10. ORC: origin of
replication complex; MCM: mini-chromosome maintenance.
doi:10.1371/journal.pone.0006804.g007
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However, it appears that the actual core factor set regulating

pluripotency and early differentiation in ES cells is larger and

more highly interconnected than previously suspected. Kim et al.

have performed a genome-wide analysis of target promoters for

nine transcription factors, namely Oct4, Sox2, Klf4, c-Myc,

Nanog, Dax1, Rex1, Zpf281, and Nac1 [64]. They found that

target promoters bound by a single or few factors tend to be

inactive or repressed, whereas promoters bound by more than four

factors are active in the pluripotent state and become repressed

upon differentiation. Interestingly, targets of Myc or Rex1 are

implicated in protein metabolism, whereas targets of the other

factors are enriched in genes involved in developmental processes.

The results also established a hierarchy within the key pluripo-

tency factors such that Klf4 serves as an upstream regulator of

feed-forward circuits involving Oct4, Sox2, Nanog and Myc.

The increasing complexity of gene regulatory networks

emerging from these studies, combined with the surging amount

of genomics and proteomics work, underscore the need for

resources that would enable the scientific community to readily

mine available and prospective data. The FunGenES database

provides such a template with a number of tools including

Animation of KEGG Pathways, Expression Waves, Time Series,

Specific Gene Classes, such as ESTs and transcription factors, and

searches for the expression pattern of any gene or transcript during

ES cell differentiation using standard gene names and IDs. Search

results are linked to: comprehensive annotation tools using the

g:Profiler tool, which includes the presence of common regulatory

motifs in promoter areas and miRNA targeting information; and,

to available resources such as NCBI Entrez, Ensembl, etc.

Genomic studies, which in principle group together co-

regulated genes, can potentially identify new components of

known regulatory pathways in ES cells that can subsequently be

explored in functional studies. In addition to well-described genes,

clusters often contain transcripts the function of which has not yet

been associated with a specific biological process thus providing

novel unexplored links to known molecular pathways.

Although the database described here was based on the gene

expression profiling results of the FunGenES consortium, it can be

easily adapted to incorporate available or future genomics data

obtained in ES cells. Moreover, the analytical paradigms and

expression pattern clusters presented here could provide a scaffold

for comparative analyses with human ES cell lines. This

information will be particularly important for future evaluation

of ES-like induced pluripotent stem (iPS) cells reprogrammed from

somatic tissues that can be potentially used to derive pancreatic

cells, cardiomyocytes or neurons for organ regeneration [21,65–

67]. For example, the g:Profiler tool provides the possibility to

convert mouse Affymetrix probe set numbers to any Affymetrix

probe set numbers from other organisms, allowing gene profiling

comparisons among data sets generated in different species. This

tool also allows conversion of previous Affymetrix probe set

numbers (i.e., the first generation of Affymetrix microarrays -

U74v2) to the more recent microarray probe set numbers (like the

MG430v2 used in this study).

During the last years, a growing number of repositories of

microarray data and other forms of gene expression profiles for

stem cell research have been developed [68–71]. Data presenta-

tion is heterogeneous and ranges from: simple storage of

expression data and experiment information (StemDB); presenta-

tion of lists of specific regulated transcripts (HESC); specific

analysis results of a closed dataset (SCDb); or storage and

visualization of variable resources with correlative and mutual

information about single transcripts (one to many relationship,

StemBase) [68–70]. To facilitate data comparison between the

FunGenES database and other resources, we have included a

series of links to other Stem cell databases, i.e., to SCDb,

Amazonia in the Study your Gene(s) of Interest search engine.

This way it is possible to obtain and compare the expression

pattern of genes in the FunGenES database to the expression

profiles in other tissues, experimental settings, or different stem

cells types.

In contrast to existing microarray database resources, the

FunGenES database includes a state of the art tools for the

interactive visualization of gene to gene relationships. It provides

gene lists and hierarchical matrices using co-expression analysis by

distance-base clustering (k-means, hierarchical clustering), as well

as integrated gene expression analyses by mapping observed gene

expression changes onto specific signaling and metabolic path-

ways. We expect that not only regenerative medicine applications,

but also basic science studies will benefit from the resources

described here, especially when compared to expression profiling

data obtained from loss- and gain-of-function approaches

[19,27,72]. Furthermore, the assignment of ESTs and genes to

specific pathways provide a fresh collection of novel components

that can be further explored in functional assays during embryonic

development and in human diseases.

Materials and Methods

RNA isolation and microarray hybridization
Total RNA was isolated using the RNeasy Mini Kit from

Qiagen and treated with RNase-free DNase I (5 units/100 mg of

nucleic acids, Sigma). Biotinylated cRNA was prepared according

to the standard Affymetrix protocol [73]. In brief, double-stranded

cDNA was synthesized from 10 mg total RNA using the

SuperScript Choice System (Invitrogen) and the Affymetrix

T7-(dT)24 primer. Following phenol/chloroform extraction and

ethanol precipitation, the cDNA was transcribed into biotin-

labeled cRNA using T7 polymerase (Ambion MEGAScript T7).

cRNA products were purified using the RNeasy kit (Qiagen) and

fragmented to an average size of 30–50 bases according to

Affymetrix recommendations. 15 mg of fragmented cRNA were

used to hybridize to the Mouse Genome 430 version 2.0 Array for

16 hrs at 45uC. The arrays were washed and stained in the

Affymetrix Fluidics Station 450 and scanned using the Affymetrix

GeneChip Scanner 3000 7G. The image data were analyzed with

the GeneChipH Operating Software (GCOS) 1.4 using Affymetrix

default analysis settings. Arrays were normalized by the log scale

robust multi-array analysis (RMA) [74].

We used 258 Affymetrix GeneChips to analyze 67 individual

experimental conditions (outlined in Table 1). A detailed

description of the individual experiments is provided in Supple-

mental File S1. The eleven microarray data sets have been

annotated in a MIAME compliant manner and deposited in EBI

ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/. The ac-

cession numbers are as follows: AVEF-1: E-TABM-669, CNRS-

UMR-5164: E-TABM-667, CNRS-UMR-6543: E-TABM-668,

IMBB-1: E-TABM-670, INS-1: E-TABM-562, INS-2: E-TABM-

671, IPK-1: E-TABM-493, TUD-1: E-TABM-675, UKOE-1: E-

TABM-672, UOB-1: E-TABM-673, UOB-2: E-TABM-674).

Each array was checked for general assay quality (39-59 ratio of

Gapdh ,1.5, noise (RawQ) ,4 and scaling factor at a TGT value

of 200 ,4). The robust multi-array average (rma) normalization

(background-adjustment, quantile normalization and median

polish summarization) has been performed using RMAExpress

version 1.0 beta 4. In addition, we assessed data integrity by

calculating Pearson correlation z-values over the complete dataset

of 45,101 probe sets. The difference between array to array
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correlation within biological replicates (z = 2.7360.38) and

between non replicates (z = 1.9060.35) indicates that there is a

sufficiently high signal to noise ratio.

Comparison of gene expression profiles in the three ES
cell lines

For comparison analysis, from the 45,101 probe sets represent-

ed on the Mouse 430 version 2 array, we selected 30,526 gene-

associated transcripts (eliminating transcripts without annotation

and of unknown origin, as well as hypothetical transcripts or

proteins). In addition, for genes represented multiple times on the

microarray, we selected the transcript with the strongest average

signal as representative for the respective gene. This brought the

number of analyzed transcripts to n = 15,263. A 5% false discovery

rate in ANOVA calculation and a 2-fold difference or higher in

any of the 3 comparisons (CGR8 vs. E14TG2a vs. R1) led to a set

of 137 differentially expressed genes (0.9% of the analyzed

transcripts).

Data preparation for unsupervised hierarchical
clustering – Global Clusters

The first step in our data analysis was to average the biological

replicates for each of the 67 experimental conditions. To identify

genes that cluster together under the tested conditions, we

excluded probe sets with a standard deviation in expression values

of , log2 (0.45) from the vector mean. We then removed

redundant gene/probe sets taking into account the ENTREZ,

Unigene and RefSeq gene-id annotations. Among redundant

probe sets, we selected the probe set with the highest average

expression signal. We also removed probe sets of unknown origin,

for example RIKEN sequences, or hypothetical transcripts/

proteins. These criteria led to a data set of 5,959 transcripts.

Unsupervised hierarchical clustering
Correlation of differentially expressed transcripts was detected

by hierarchical clustering of expression values with the Cluster

version 2.11 software [52] applying mean centering and

normalization of genes and arrays before the computational

clustering analysis. Average linkage hierarchical clustering of the

data was carried out as described [75].

Permutations
The correlation significance of expression profiles between

probe sets was assessed empirically by one hundred rounds of

random permutations. For each round, the 67 values for each

probe set were randomly redistributed [76] and data sets clustered

as described [75]. The best similarity scores of each permuted and

clustered data set was collected to evaluate the 95th percentile of

significant clusters in the original data set. 5% of the permuted

data sets gave rise to clusters containing no more than two genes at

a similarity score .0.85071 (Supplemental File S6). Clusters with

3 or more genes (115 clusters) were documented and selected for

further analysis.

Clustering of the data in Time Series
Besides the clustering described above that was based on the

entire spectrum of experimental conditions, expression data were

clustered according to timing of expression in a two-step strategy.

First, probe sets were clustered with k-means into a small number

of clusters using chord distance (Euclidean distance over vectors

normalized to unit sphere). In a second step, the resulting clusters,

represented by mean profiles, were clustered using average linkage

hierarchical clustering with Pearson correlation distance measure,

and visualized in a heatmap representation [52]. No filtering

besides removing genes with low variation was applied to these

data sets.

Expression Waves
We developed a method to identify all genes that have

characteristic expression patterns during ES cell differentiation.

In brief, transcripts were included into a particular expression

wave represented by a single artificial template, if its correlation

with the specific pattern was higher than a certain threshold and

also highest among all other patterns. This analysis was done in

two different stringent conditions with correlation thresholds of 0.8

and 0.85. The results are presented in a series of graphs, with the

list of genes that belong in the depicted pattern identified below.

Each graph is juxtaposed to its ‘‘mirror image’’, i.e., the graph

representing genes that behave exactly the opposite way.

Pathway Animations
We designed animations of pathways in the Kyoto Encyclope-

dia of Genes and Genomes (KEGG) [44]. The animations use

diagrams available at the KEGG webpage, which portray

connections between pathway components. The expression levels

of relevant genes are shown in the diagrams by the standard red

(high) – green (low) color codes. In case a gene family represents a

particular pathway step, the corresponding box displays the

expression patterns of all individual members of the family in

adjacent vertical stripes. Each stripe may be further divided

horizontally depicting the expression patterns of different probe

sets corresponding to the same transcript.

‘‘Study your Gene(s) of Interest’’
This feature has been designed to allow investigators to search

and display the expression of any probe set during ES cell

differentiation based on the FunGenES data sets. The program

draws clustered heatmaps with the columns annotated with

relevant sample information. The search engine recognizes

common gene identifiers; the conversion to Affymetrix probe set

IDs is done using Ensembl BioMart [77] mappings. The heatmap

representation is based on the ExressView tool, which is linked to

the URLMAP, to provide further analysis options for selected

genes. The organization of the various FunGenES tools is depicted

in Supplemental File S7.

Supporting Information

Supplemental File S1 Detailed overview of the microarray

experimental designs & Contact Information

Found at: doi:10.1371/journal.pone.0006804.s001 (0.24 MB

PDF)

Supplemental File S2 Yield of the unsupervised hierarchical

clustering. Histogram of the number of clusters (y-axis) for each

cluster size (x-axis). Clusters with more than 100 genes are listed

separately on the top right corner.

Found at: doi:10.1371/journal.pone.0006804.s002 (0.58 MB TIF)

Supplemental File S3 Gene content of the 115 Global Clusters

Found at: doi:10.1371/journal.pone.0006804.s003 (0.40 MB

XLS)

Supplemental File S4 Comparison of gene expression profiles

obtained by Q-PCR (left panels) and microarray analysis (right

panels). The gene name is depicted on top of the Q-PCR graph;

the Affymetrix ID of the same gene marks the corresponding

adjacent graph. CT: Cycle Threshold values of the Q-PCR

analysis. Signal: normalized log2 signal values from the microarray
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analysis. Genes are organized according to the Global Cluster they

belong as indicated. The results show comparable gene expression

profiles between microarray and Q-PCR data.

Found at: doi:10.1371/journal.pone.0006804.s004 (0.97 MB TIF)

Supplemental File S5 Experimental data sets used in Time

Series

Found at: doi:10.1371/journal.pone.0006804.s005 (0.05 MB

PDF)

Supplemental File S6 Evaluation of significant correlations.

Ranked plot of the best similarity scores (y-axis) of 100 permutated

and clustered datasets (x-axis) and the evaluated 95th percentile of

significant clusters (blue line). The results are given for cluster

nodes with more than two (black line) or three (red line) cluster

members.

Found at: doi:10.1371/journal.pone.0006804.s006 (0.55 MB TIF)

Supplemental File S7 Schematic representation of the Fun-

GenES Database depicting tools to view expression data sets and

links to external resources and databases. Tools in boldface have

been developed specifically for the FunGenES Database.

Found at: doi:10.1371/journal.pone.0006804.s007 (0.79 MB TIF)
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