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ABSTRACT

Steroid hormones are believed to enter cells solely by free diffusion through the 

plasma membrane. However, recent studies suggest the existence of cellular uptake 

pathways for carrier-bound steroids. Similar to the clearance of cholesterol via

lipoproteins, these pathways involve the recognition of carrier proteins by endocytic 

receptors on the surface of target cells, followed by internalization and cellular 

delivery of the bound sterols. Here, we discuss the emerging concept that steroid 

hormones can selectively enter steroidogenic tissues by receptor-mediated 

endocytosis; and we discuss the implications of these uptake pathways for steroid 

hormone metabolism and action in vivo.
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Introduction: Endocytosis mediates cellular uptake of cholesterol

All sterols transported in plasma or extracellular fluids are solubilized by proteins. 

When contemplating mechanisms how to deliver circulating sterols to cells, it may be 

quite insightful to consider how this task is achieved for the prototype sterol 

cholesterol.

Transport of cholesterol in the extracellular space is facilitated by a special 

protein complex called lipoprotein (Havel and Kane, 2001). Lipoproteins are 

spherical macromolecules of 10 to 1200 nm diameter composed of a core of neutral 

lipids (mostly cholesterol ester and triglycerides) surrounded by an amphipathic shell 

of polar phospholipids and cholesterol. Embedded in the shell of lipoproteins are 

apoproteins that are essential for assembly of the particles and for their recognition by 

cells (Havel and Kane, 2001). Lipoproteins traffic cholesterol from the tissue of origin 

to target sites where the lipid cargo is delivered through receptor-mediated 

endocytosis (Fig. 1) (Goldstein et al., 2001). Delivery involves lipoprotein receptors

on the surface of the cells that bind the apoprotein. Following interaction at the cell 

surface, receptor-ligand complexes are internalized and delivered to endosomal 

compartments. There, the receptors discharge their cargo.  Un-liganded receptors 

recycle back to the cell surface while lipoproteins move to lysosomes where they are 

catabolized. The apoprotein moiety is degraded into small peptides and the lipids are

released (Goldstein et al., 2001).  Cholesterol enters the cellular membrane pool via 

the Endoplasmatic Reticulum, is converted into steroid hormones in mitochondria, or 

stored as cholesterol esters in cytoplasmic lipid droplets (Fig. 1). The exact 

mechanism of cholesterol trafficking between cellular compartments is still a matter 

of investigation (Prinz, 2002). Trafficking critically depends on the activity of 

intracellular sterol carrier proteins that solubilize the sterol and direct its transport
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(Liu, 2009). For example, exit of cholesterol from lysosomes requires the activity of 

two proteins designated Niemann-Pick disease type C protein 1 (NPC-1) and 2 (NPC-

2). NPC-1 is a polytopic membrane protein with sterol-sensing domain that acts as 

cholesterol transporter across membranes (Kwon et al., 2009; Zhang et al., 2001). 

NPC-2 is a small cholesterol binding protein possibly involved in shuttling sterols

between membranes (Naureckiene et al., 2000; Okamura et al., 1999). 

The composition of apoproteins provides a unique signature of individual 

lipoprotein classes specifying the origin and types of lipids transported, and their 

destiny. Target cells express a unique set of lipoprotein receptors on their surface that 

are able to discriminate various lipoprotein species by recognition of their specific 

apoprotein profile. Thus, receptor-mediated endocytosis provides an efficient and 

highly selective mechanism for directing cholesterol and other lipids into their proper 

target tissue. 

The main class of lipoprotein receptors is a group of cell surface proteins 

called the low-density lipoprotein (LDL) receptor gene family (Fig. 2) (Beffert et al., 

2004; Herz and Hui, 2004; Schneider, 2007; Willnow et al., 1999). Family members 

are expressed in many tissues in organisms as distantly related as nematodes and 

mammals. The LDL receptor is the archetype of the gene family and has a structure 

and function typical of a receptor involved in cellular cholesterol uptake (Fig. 2). Its 

significance for systemic cholesterol homeostasis is underscored by pathological 

features in patients with Familial Hypercholesterolemia, inheritable LDL receptor 

gene defects that result in an inability of affected individuals to clear cholesterol-rich 

lipoproteins from the circulation (Goldstein et al., 2001). Other members of the gene 

family with confirmed roles in lipoprotein metabolism include the LDL receptor-

related protein (LRP) 1, a receptor for clearance of dietary lipids in the liver
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(Rohlmann et al., 1998). Very-low density lipoprotein (VLDL) receptors and yolkless 

are expressed in oocytes of egg-laying species from insects to birds and mediate the 

endocytic uptake of yolk (Bujo et al., 1995; Grant and Hirsh, 1999; Schonbaum et al., 

1995).

Receptors for steroid carriers – surface binding sites for sterol signaling and 

uptake

In contrast to the precursor cholesterol, cholesterol-derived steroid hormones are not 

transported by lipoproteins but by plasma carrier proteins. Carrier proteins are unique 

for individual classes of steroid hormones. They include the vitamin D binding 

protein (DBP; the carrier for vitamin D metabolites) (White and Cooke, 2000), the sex 

hormone-binding globulin (SHBG; the carrier for androgens and estrogens)

(Hammond and Bocchinfuso, 1995), and the corticosteroid-binding globulin (CBG; 

the carrier for glucocorticoids) (Scrocchi et al., 1993). Curiously, steroid hormones 

bound by carrier proteins are considered biologically inactive. Instead it is the free 

steroid that is proposed to enter target cells by unspecific diffusion through the plasma 

membrane following release from its carrier. In this model, binding of sterols to

carriers provides a reservoir of inactive circulating steroids and it regulates the 

amount of free hormones available for diffusion into tissues. This model is known as 

the free hormone hypothesis (Mendel, 1989).

Ample evidence from studies in humans and experimental models supports the 

free hormone hypothesis. However, distinct expression of carriers in steroid-target 

tissues also suggests roles for these proteins in local steroid hormone action (Hryb et 

al., 2002; Kahn et al., 2002). Over the years there have been consistent reports 
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describing the existence of surface binding sites for steroid hormone carriers on 

tissues, suggesting alternative pathways for targeting protein-bound sterols to distinct 

cell types. Initial reports have mainly used biochemical approaches to detect

interaction sites for steroid carriers in membrane preparations. Among other tissues,

binding sites for SHBG have been documented in prostate, testis, epididymis and 

endometrium (Feldman et al., 1981; Fortunati et al., 1991; Frairia et al., 1991; Hilpert 

et al., 2001; Hryb et al., 1985; Krupenko et al., 1994; Porto et al., 1995), and in 

established cell lines such as the estrogen-dependent breast cancer cell line MCF-7

(Catalano et al., 2005; Fortunati et al., 1998; Nakhla et al., 1999; Rosner et al., 1999). 

Surface binding sites for CBG have been shown in liver, endometrium, placenta, 

prostate, spleen, and kidney (Hryb et al., 1986; Maitra et al., 1993; Singer et al., 1988; 

Strel'chyonok and Avvakumov, 1991). Potential receptors for DBP have been 

reported on macrophages, trophoblasts, and neutrophils (DiMartino et al., 2007; 

Gumireddy et al., 2003; Haddad, 1995).

Surface binding sites for steroid carriers are implicated in different cellular 

processes (Caldwell et al., 2006). They are proposed to act as receptors for 

transmembrane signaling of steroid hormones, a pathway that does not require 

steroids to enter cells or to interact with nuclear hormone receptors (non-genomic 

action). Most extensively, this activity (tentatively named RSHBG) has been studied in 

the breast cancer cell line MCF7. In this cell type, SHBG has been implicated in

cAMP-dependent signaling of bound-estradiol (Heinlein and Chang, 2002; Kahn et 

al., 2008; Nakhla et al., 1999; Rosner et al., 1999). Furthermore, the carrier has been 

shown to antagonize estradiol-induced proliferation of these cells by inhibiting the

activation of extracellular regulated kinase (ERK) -1/-2 (Catalano et al., 2005) and 

by regulating expression of downstream target genes involved in cell growth and 
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apoptosis (Catalano et al., 2007; Fortunati and Catalano, 2006). These concepts are

described in detail elsewhere in this issue. Stimulation of membrane receptors by 

SHBG and down-stream signaling through MAP kinase pathways has also been 

reported in neuronal cell lines (Caldwell et al., 2006).

In addition, surface binding sites for carrier proteins have been implicated in 

local sequestration of steroids, thereby enhancing the free diffusion of hormones into 

tissues (Janne et al., 1998). Notably, Hammond and coworkers identified fibulin-1D 

and fibulin-2, components of the extracellular matrix as binding sites for SHBG. 

Interaction of SHBG with the extracellular matrix is dependent on the presence of sex 

steroids and facilitates accumulation of SHBG-bound estrogens in the stroma of the 

endometrium (Ng et al., 2006).

Last but not least, surface binding sites have been proposed to mediate the 

cellular uptake of carrier-bound steroid hormones. For example, uptake of SHBG has 

been documented in epithelial cells of the epididymis and endometrium (Feldman et 

al., 1981; Gerard et al., 1988; Noe et al., 1992), in MCF-7 cells (Porto et al., 1991),

and in neurons in the brain (Caldwell et al., 2007). A biological process, where uptake 

of SHBG is suggested to play a physiological role is the delivery of testosterone to 

principal cells in the epididymis (Fig. 3). In male rodents, SHBG (also known as 

androgen binding protein (ABP)) is produced by Sertoli cells in the testis and secreted 

into the lumen of the seminiferous tubules (Feldman et al., 1981; French and Ritzen, 

1973). There it binds testosterone present in large amounts in the testicular fluids. Via 

the efferent ducts, SHBG is transported to the epididymis and internalized by 

principal cells lining the epididymal duct (Feldman et al., 1981; Gerard et al., 1988). 

Because principal cells are responsible for conversion of testosterone into 

dihydrotestosterone required for sperm maturation, endocytic uptake of SHBG is 
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proposed to provide a route for efficient delivery of testosterone to these cells (French 

and Ritzen, 1973; Gerard et al., 1988; Noe et al., 1992; Turner et al., 1995). The 

molecular identity of cell surface receptors for SHBG has not been revealed in 

previous reports. Binding studies indicated that this receptor activity binds SHBG 

with a Kd of 0.5 µM in solubilized prostate membranes (Hryb et al., 1989). By size 

chromatography an approximate molecular weight of 167 kDa was calculated (Hryb 

et al., 1989). Similarly, a SHBG receptor activity was also partially purified from 

human endometrium (Fortunati et al., 1992).

Megalin, a receptor for cellular uptake of vitamin D metabolites bound to DBP

The first receptor for uptake of carrier-bound steroids identified and characterized in 

detail is megalin, a member of the LDL receptor gene family (Fig. 2). Megalin (or 

LRP2) is 600 kDa protein specifically expressed on the apical surface of absorptive 

epithelia (Saito et al., 1994). Prominent sites of expression in the adult organism are

the proximal tubules in the kidney, the uterine epithelium, the epididymis, the 

mammary gland, as well as the ependyma in the brain ventricles (Zheng et al., 1994).

During embryonic development, highest expression of the receptor is seen in the 

visceral endoderm of the yolk sac and the epithelial cells of the neural tube, the 

progenitor of the developing central nervous system (Assemat et al., 2005). An 

appreciation of the significance of megalin for embryonic development came with the 

generation of mouse model carrying a targeted disruption of the murine megalin gene.

Animals genetically deficient for the receptor suffer from malformation of the 

forebrain characterized by fusion of the forebrain hemispheres, lack of the corpus 

callosum, and incompletely developed eyes and olfactory bulbs (Willnow et al., 
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1996). This syndrome is known as holoprosencephaly (HPE), a defect in formation of 

the embryonic mideline affecting as many as 1 in 250 pregnancies in humans (Wallis 

and Muenke, 1999). Intriguingly, several genes implicated in sterol metabolism cause 

HPE when mutated in patients or animal models . These genes encode 7-

dehydrocholesterol reductase, an enzyme in the cholesterol biosynthetic pathway

(Kelley, 2000; Kelley and Hennekam, 2000), as well as sonic hedgehog, a morphogen 

that is covalently modified by cholesterol (Schell-Apacik et al., 2003). Recently, the 

relevance of megalin activity for embryonic brain formation was substantiated by the 

identification of Megalin gene defects in patients suffering from Donnai-Barrow 

syndrome, an autosomal recessive disorder characterized by various brain anomalies

(Kantarci et al., 2007). Whether or not the role of megalin in forebrain patterning 

involves a function in embryonic sterol metabolism is unclear as yet.

Previously, the functional elucidation of megalin had been hampered by the 

fact that its physiological ligands were unknown. In vitro and in cultured cells, a 

plethora of ligands had been indentified that bound to this receptor. Apart form 

apolipoprotein (apo) B100 and apoE, potential ligands included proteases and 

protease inhibitors, enzymes, and peptide hormones (reviewed in (Christensen and 

Birn, 2002; Willnow et al., 1999)).  A clue as to the true ligands of this receptor came 

with the analysis of mice with ubiquitous or kidney-specific megalin gene defects

(Leheste et al., 1999; Nykjaer et al., 1999). Based on the prominent expression of 

megalin on the luminal surface of the renal proximal tubules, a role for the receptor in 

retrieval of metabolites from the glomerular filtrate had been anticipated. Consistent 

with this assumption, mice lacking megalin expression exhibited tubular resorption 

deficiency and excreted a number of plasma protein normally reabsorbed by the 

receptor in the kidney. Intriguingly, ligands excreted by receptor-deficient animals
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were low-molecular weight carrier proteins including DBP (Nykjaer et al., 1999), 

clara cell secretory protein (CCSP) (Burmeister et al., 2001), a carrier for 

progesterone, as well as transcobalamin and retinol binding protein, carriers for 

vitamin B12 and retinol, respectively (Birn et al., 2002; Christensen et al., 1999).

Subsequent studies confirmed the relevance of megalin as a renal retrieval pathway 

for carrier-bound lipophilic vitamins and hormones essential to prevent uncontrolled

urinary loss of these important metabolites (Christensen and Birn, 2001; Muller et al., 

2003; Verroust et al., 2002).

Apart from elucidating a novel pathway in renal vitamin homeostasis, studies on 

the role of megalin in renal uptake of DBP arose considerable attention as they

challenged the dogma stated by the free hormone hypothesis. 25-OH vitamin D3 is the 

main vitamin D metabolite present in the circulation. It is an inert precursor that needs to 

be converted to 1,25-(OH)2 vitamin D3, the active hormone that regulates the systemic 

calcium homeostasis. Activation of 25-OH vitamin D3 takes place in the proximal tubules 

of the kidney. In line with the free hormone hypothesis, 25-OH vitamin D3 was proposed 

to enter the cells of the proximal tubule by free diffusion from the interstitial side. Given 

the large amounts of 1,25-(OH)2 vitamin D3 produced daily, dependence of the organism 

on unspecific diffusion processes to deliver the precursor sterol 25-OH vitamin D3 

selectively to this cell type in the body seemed awkward.

The 58 kDa DBP is the main plasma carrier for vitamin D metabolites (Cooke et 

al., 1991). It exhibits highest affinity for 25-OH vitamin D3 (Kd 10-10 - 10-12 M) (Haddad, 

1995; Haddad et al., 1981). Because DBP is present in 100-fold molar excess in the 

circulation, virtually all 25-OH vitamin D3 is bound by this carrier (Bikle et al., 1986). 

Similar to other steroid carriers, DBP was believed to regulate the bioavailability of 

vitamin D metabolites and to protect the organism from excessive amounts of the free 



Page 11 of 44

Acc
ep

te
d 

M
an

us
cr

ip
t

11

sterol (Haddad, 1995). This concept had been challenged by findings obtained in DBP 

knockout mice. In these animals, lack of the carrier results in an inability to properly 

deliver 25-OH vitamin D3 to the kidney for uptake and activation. Instead, most of the 

metabolite is wrongfully directed to the liver and catabolized, or lost in the kidney 

through urinary excretion (Safadi et al., 1999). A crucial role for the carrier in renal 

targeting and activation of 25-OH vitamin D3 was also supported by the observation that 

DBP knockout mice are protected rather than sensitized to vitamin D toxification (Safadi 

et al., 1999).

Detailed analysis of mice genetically deficient for megalin uncovered the true 

mode of delivery of 25-OH vitamin D3 to proximal tubule cells (Fig. 4). Contrary to 

previous hypotheses, it is not the free but the carrier-bound sterol that enters the cells. 

Uptake does not entail unspecific diffusion but relies on a highly specific uptake pathway

involving an endocytic receptor for the carrier DBP. Delivery of the sterol does not 

proceed from the interstitium (basolateral side) but from the luminal (apical side) of the 

proximal tubule following glomerular filtration of the steroid/carrier complex. Absence 

of this DBP receptor pathway in megalin-/- mice results in an inability to retrieve 25-OH 

vitamin D3/DBP complexes from the primary urine and in aberrant excretion of the 

metabolite. As a consequence of urinary loss of the steroid, plasma levels of 25-OH 

vitamin D3 and 1,25-(OH)2 vitamin D3 are decreased by more than 70%, resulting in 

plasma vitamin D deficiency and in bone calcification defects (Hilpert et al., 2002; 

Leheste et al., 2003; Nykjaer et al., 1999). 

A role for megalin in tubular clearance of DBP-bound vitamin D metabolites was 

confirmed in other models of impaired receptor function. In mice genetically deficient for 

the receptor-associated protein, a chaperone required for megalin biosynthesis (Willnow 

et al., 1996), the amount of megalin in the kidney is reduced by 50%. The reduction in 
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receptor expression results in urinary loss of DBP (Birn et al., 2000). Excretion of the 

DBP is also seen in rats treated with maleate, a substance that causes shedding of megalin 

from the luminal surface of the proximal tubules (Nagai et al., 2001). Patients with 

Donnai-Barrow syndrome where shown to excrete DBP as well (Kantarci et al., 2007).

Finally, megalin-mediated uptake of DBP-bound vitamin D metabolites was substantiated

in various cell lines such as osteoblasts, mammary epithelial cells, stellate cells, and in 

cells of the yolk sac (Chlon et al., 2008; Gressner et al., 2008; Nykjaer et al., 1999; 

Rowling et al., 2006).

In recent years, the molecular details of the endocytic machinery responsible for 

cellular uptake of DBP-bound sterols were unraveled. Nykjaer et al. identified cubilin, a 

second cell surface receptor for DBP in proximal tubule cells. Cubilin is a 460 kDa 

peripheral membrane protein that lacks transmembrane or cytoplasmic domains required 

for endocytosis. Thus, the receptor associates with megalin to recycle through the 

endocytic compartments of the cell (Burmeister et al., 2001; Hammad et al., 2000; 

Moestrup and Verroust, 2001).  A role for cubilin in renal DBP uptake was uncovered, 

when DBP affinity chromatography was applied to identify membrane proteins in the 

kidney that may be involved in binding and cellular uptake of 25-OH vitamin D3/DBP 

complexes. Besides megalin, the established DBP receptor, cubilin was purified (Nykjaer 

et al., 2001). Further analysis demonstrated that cubilin internalizes complexes of DBP 

and 25-OH vitamin D3, and that cubilin deficiency in patients and in dogs with 

inheritable cubilin gene defects results in urinary loss of the steroid and in a decrease in 

plasma 25-OH vitamin D3 and 1,25-(OH)2 vitamin D3 levels (Nykjaer et al., 2001). These 

findings suggested a two-receptor model for cellular uptake of the DBP/steroid complex 

(Fig. 4A). 
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Studies in patients and animal models with proximal tubular resorption 

deficiencies of various etiologies identified further components of the cellular machinery 

involved in delivery of the carrier DBP. Disabled (Dab) 2 is a cytoplasmic adaptor 

protein that binds to the cytoplasmic tail of megalin and that is required for proper 

routing of the receptor (Gotthardt et al., 2000). Inactivation of Dab2 in mice results in an 

inability of megalin to perform endocytosis. Consequently, Dab2-deficient mice are 

characterized by urinary loss of DBP (Morris et al., 2002). Like most proteins 

internalized by endocytic receptors, DBP is subject to lysosomal degradation, an efficient 

way to relieve 25-OH vitamin D3 from its high affinity carrier. Proper function of the 

endocytic pathway in cells of the renal proximal tubule is dependent on the activity of the 

Cl-/H+ exchanger 5 (ClC-5) in endosomes (Plans et al., 2009). Patients suffering from 

inheritable ClC-5 gene defects (Dent´s disease) are characterized by disturbances in 

proximal tubular protein resorption and in calcium and bone metabolism (Lloyd et al., 

1996; Pook et al., 1993). The underlying defect was identified as an inability of the tubule

cells to perform megalin-mediated uptake of vitamin D metabolites bound to DBP (Plans 

et al., 2009). The same finding was obtained in mouse models of ClC-5 deficiency

(Piwon et al., 2000; Wang et al., 2000).

Taken together, studies in humans and in animal models have firmly established

the existence and the physiological importance of endocytic pathways for cellular uptake 

of the steroid carrier DBP in renal vitamin D homeostasis (Fig. 4B) (Negri, 2006; 

Willnow and Nykjaer, 2002).

Role of megalin in sex steroid action
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Besides in the renal proximal tubules, megalin is also expressed in a number of other 

steroid-responsive tissues, in particular in the male and female reproductive organs 

(epididymis, ovaries, uterus) (Zheng et al., 1994). In the uterine epithelium, 

expression of the receptor is tightly regulated during estrus cycle, with strongest

expression in met- und diestrus (Hammes et al., 2005). In fact, megalin has been 

identified as one of the major progesterone target genes in this tissue (Spencer et al., 

1999). In addition, expression of the receptor has been detected in epithelial cells of 

the mammary gland and the prostate, tissues that give rise to sex steroid-dependent 

tumors (Chlon et al., 2008; Stanford et al., 1999). Collectively, these observations

suggested the intriguing possibility that the role of megalin may not be restricted to 

endocytosis of vitamin D metabolites in the kidney, but extend to the cellular uptake 

of sex steroid in other organs.

Evidence for a physiological role of megalin in sex steroids action stems from 

the defects observed in the receptor-deficient mouse model. Apart from bone disease 

as a consequence of hypovitaminosis D (Nykjaer et al., 1999), adult megalin-/- animals 

suffer from anomalies in genital maturation consistent with insensitivity to androgens 

and estrogens. Despite normal (estradiol) or even increased levels (testosterone, DHT)

of circulating hormones, these mice exhibit defects seen in rodents treated with anti-

androgens and anti-estrogens. Thus, female receptor null mice fail to induce opening 

of the vagina cavity, a benchmark of natural puberty. This process can be induced in

the immature rodent by injection of estradiol and blocked by application of anti-

estrogens (Ashby et al., 2002). Megalin-/- males suffer from testicular maldescent. 

This process can be induced in offspring of pregnant rats and mice by treatment with 

flutamide, an inhibitor of the androgen receptor or with finasterite, a blocker of 5 

alpha reductase that converts testosterone to DHT (Spencer et al., 1991). 
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Blockade of testicular descent in megalin knockkout mice was linked to a 

failure of affected males to induce regression of the cranial suspensory ligament 

(CSL), a tissue strand that tethers the cranial pole of the early embryonic gonad to the 

lateral body wall (Fig. 5B). In females, the CSL persists and holds the ovaries in a 

position close to the kidney. In males, the primordium of the CSL regresses during 

development enabling descent of the testes towards the lower abdomen (Fig. 5A). 

Involution of the CSL in males is androgen dependent. In mice lacking the androgen 

receptor (Hutson, 1986; Zimmermann et al., 1999) or in animals treated with anti-

androgens (van der Schoot and Elger, 1992) the CSL persists, resulting in 

maldescendus testis. 

Collectively, the phenotypic alterations described above suggested sex steroid 

insensitivity as the underlying cause of the defects observed in megalin-deficient 

mice. Sex steroid insensitivity was further supported by the fact that megalin-deficient 

embryos failed to induce regression of the CSL in response to exogenous application 

of androgens, a response that was readily seen in wild types (Hammes et al., 2005).

Based on the ability of megalin to internalize DBP-bound sterols, a similar 

function of the receptor in uptake of carrier-bound sex steroids is highly suggestive. 

In line with this hypothesis, megalin was shown to act as endocytic receptor for 

human SHBG and rodent ABP in cultured cells (Hammes et al., 2005). When exposed 

to sex steroids in the presence of physiological concentrations of the carriers, cells 

were dependent on megalin activity to internalize significant amounts of the 

hormones. Little steroid hormone uptake was seen in the presence of megalin 

antagonists or in cell types that lacked receptor expression. SHBG-bound steroids 

delivered by megalin entered intracellular compartments and acted as inducers of 

steroid target genes, the hallmark of cellular steroid action (Hammes et al., 2005). 
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The ability of megalin to mediate endocytic uptake of androgens and estrogens 

bound to carrier proteins in cultured cells suggests a working model whereby delivery 

of sex steroids by megalin plays a critical role in regulation of steroid-dependent 

maturation of the reproductive organs. Although highly suggestive, formal proof for a 

role of megalin in delivery of sex steroids to target tissues in vivo remained 

controversial (Rosner, 2006). The most obvious caveat is the fact that the plasma 

carrier for sex steroids in rodents is unknown. In humans, SHBG is produced by the 

liver and secreted into the circulation to act as systemic carrier for androgens and 

estrogens (Cousin et al., 1998; Rosner et al., 1984). In contrast in rodents, expression 

of SHBG is restricted to the fetal liver and to the ovaries and testes of the adult 

organism (Gershagen et al., 1989; Hammond and Bocchinfuso, 1996; Joseph, 1994; 

Joseph et al., 1997). While this expression pattern is consistent with a role of SHBG 

in local sex steroid metabolism in reproductive tissues, other carrier proteins are 

certainly involved in steroid hormone trafficking in rodents as well. Whether these 

carriers are ligands to megalin remains to be shown, once the identities of such

carriers have been revealed. Recently, megalin-dependent uptake of fluorescent-

labeled estradiol into the marginal cells of the stria vascularis in the inner ear has been 

shown (Konig et al., 2008). This finding strongly supports a role for the receptor as 

cellular entry pathway for sex steroids in vivo. Such uptake pathways may not only be 

relevant for normal functions of steroids but also contribute to the delivery of steroid 

hormones to androgen-dependent tumors as suggested by the association of Megalin 

gene variants with fatal outcome of prostate tumors in patients (Holt et al., 2008).

Mouse models of CBG deficiency
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As well as generating mouse models with defects in presumed receptors for steroid 

carriers (as for megalin), one may also approach the functional significance of bound 

steroids by developing animal models of carrier deficiencies. According to the free 

hormone hypothesis, lack of the carriers should results in increased concentrations of 

the biologically active free hormone and, consequently, in a condition of aggravated

steroid signaling. 

The analysis of mouse models with induced Dbp gene defect has already been 

discussed above. Surprisingly, some phenotypes observed in this model such as

protection from vitamin D toxification are incompatible with the free hormone 

hypothesis (Safadi et al., 1999). Similarly, phenotypic characterization of mice 

lacking CBG revealed some surprising findings. CBG is the major transport protein 

for glucocorticoids in plasma of mammalian species with more than 90% of 

circulating corticosteroid molecules being bound by this carrier (Breuner and 

Orchinik, 2002; Hammond et al., 1987; Rosner, 1990). CBG is a 55 kDa monomeric 

glycoprotein that is mainly secreted by the liver, but is also produced in lung, kidney, 

and testis (Hammond et al., 1987). CBG plays an important role in the metabolism 

and action of glucocorticoids. Most notably, its role in transport of otherwise 

insoluble glucocorticoids is appreciated. However, the identification of surface 

binding sites for CBG in a number of steroid-target tissues including liver, 

endometrium, and spleen (Hryb et al., 1986; Maitra et al., 1993; Singer et al., 1988; 

Strel'chyonok and Avvakumov, 1991) suggested the existence of membrane receptors 

for cellular uptake and/or transmembrane signaling of CBG/steroid complexes. To 

test the relevance of CBG for glucocorticoid action and adrenocortical stress response

mice genetically deficient for CBG were generated (Petersen et al., 2006). Absence of 

CBG resulted in lack of corticosterone binding activity in serum and in a ~10-fold 
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increase in free corticosterone levels in CBG null mice, consistent with its role in 

regulation of circulating free hormone levels. Surprisingly, Cbg-/- animals did not 

present with features seen in organisms with enhanced glucocorticoid signaling. 

Rather, the mice exhibited increased activity of the pituitary axis of hormonal control, 

normal to decreased levels of gluconeogenetic enzymes, as well as an aggravated 

response to septic shock, indicating an inability to appropriately respond to the excess 

free corticosterone in the absence of CBG (Petersen et al., 2006). Thus, these data 

suggest an active role for CBG in bioavailability, local delivery, and/or cellular signal 

transduction of glucocorticoids that extends beyond a mere function as cargo 

transporter.

Perspective

Conceptually, the quest for receptors involved in cell type specific delivery of sterols

has mainly focused on the search for membrane-associated forms of nuclear hormone 

receptors. Such receptor pathways have been documented for progestins (Ferrell, 

1999; Zhu et al., 2003a; Zhu et al., 2003b) and estrogens (Song and Santen, 2006). 

However, specificity in steroid targeting may just as well be achieved by surface 

binding sites for carrier proteins as they are unique for distinct classes of steroids. 

Such a concept has evolved for cell-type specific uptake of cholesterol in lipoproteins.

Intriguingly, megalin-mediated internalization of carrier bound steroid hormones 

follows the same basic principal, suggesting the evolutionary conservation of sterol 

uptake pathways. Megalin’s functions in cell type specific action of steroid hormones 

may represent a pathway that developed early in evolution. In Caenorhabditis 

elegans, the megalin orthologue Ce-LRP1 mediates the uptake of cholesterol into 

cells that convert the precursor sterol into an intracellular steroid hormone essential 
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for regulation of larval growth (Entchev and Kurzchalia, 2005; Matyash et al., 2004; 

Yochem et al., 1999).

Concluding this review, one should stress the fact that endocytic pathways for 

carrier-bound hormones are unlikely to account for all pleotropic effects of steroid 

hormones. Rather, all the experimental evidence points to the fact that such uptake 

pathway play an important role in certain physiological conditions when fast and 

efficient cell-type specific uptake of steroids may be required. Notably, such 

pathways may be found in tissues involved in activation of steroid hormones (e.g., 

proximal tubules, epididymis). Also, in instances when steroid hormone action is 

required during a narrow time window (as for involution of the CSL), the organism 

may not rely on unspecific diffusion processes for delivery of these essential 

regulators. Exciting in terms of medical applications is the prospect that steroid 

dependent tumors may use endocytic pathways for acquiring large amounts of sex 

steroids, and that such uptake pathways may represent novel drug targets in therapy of 

these common neoplastic diseases.
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FIGURE LEGENDS

Figure 1. Endocytic pathway for uptake of cholesterol.

Lipoproteins are taken up by lipoprotein receptors (LDL receptor) via binding of the 

apolipoprotein moiety on the lipoprotein particle. Following coated-pit endocytosis, 

the receptors discharge their ligands in endosomes before recycling back to the cell 

surface. Internalized lipoproteins are catabolized in lysosomes. There, apoproteins are 

degraded, while cholesterol enters the cellular membrane pool via the Endoplasmatic 

Reticulum (ER), is converted into steroid hormones in mitochondria, or stored as 

cholesterol esters in cytoplasmic lipid droplets. Exit of cholesterol from lysosomes 

requires the activity of Niemann-Pick disease type C protein 1 (NPC-1) and NPC-2.

Figure 2. The LDL receptor gene family.

The figure depicts the structural organization of members of the LDL receptor gene 

family. Among other modules, their extracellular domains are composed of clusters of 

complement-type repeats, the site of ligand binding, as well as -propellers that are 

essential for pH-dependent release of ligands in endosomes. The cytoplasmic tails 

harbor recognition sites for cytosolic adaptor proteins involved in receptor trafficking. 

LDLr, low-density lipoprotein receptor; LRP, LDL receptor-related protein; RME-2, 

receptor-mediated endocytosis-2; VLDLr, very low-density lipoprotein receptor. 

Figure 3: Metabolism of androgen binding protein in the epididymis.

In rodents, androgen binding protein (ABP) is secreted by Sertoli cells in the testis. In 

the lumen of the seminiferous tubules, the carrier binds testosterone and delivers the 

androgen to principal cells in the epididymis. Internalization through a yet unknown 
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ABP receptor enables cell type specific uptake of large quantities of bound 

testosterone to be converted into dihydrotestosterone (DHT).

Figure 4: Renal uptake of 25-OH vitamin D3 bound to vitamin D binding protein.

(A) Two-receptor model for vitamin D binding protein (DBP) uptake in renal proximal 

tubular cells. Complexes of DBP and 25-OH vitamin D3 are reabsorbed from the 

glomerular filtrate by association of DBP with megalin, followed by endocytic uptake. 

Alternatively, the steroid-carrier complexes are bound by cubilin and internalized via 

interaction of this receptor with megalin. 

(B) Cellular uptake and activation of DBP-bound 25-OH vitamin D3. Complexes of DBP 

and 25-OH vitamin D3 are cleared from the glomerular filtrate by association of DBP 

with megalin and cubilin expressed on the apical surface of cells in the proximal tubule. 

Complexes are internalized by receptor-mediated endocytosis via clathrin-coated pits and 

delivered to endosomal compartments containing ClC-5. Endocytosis of receptor/ligand 

complexes is assisted by Dab2 (and possibly other trafficking adaptors) bound to the 

cytoplasmic tail of megalin. From endosomes, un-liganded receptors recycle back to the 

cell surface, while DBP is degraded in lysosomes. 25-(OH) vitamin D3 is transported to 

mitochondria to be hydroxylated to 1,25-(OH)2 vitamin D3 and released into the

interstitial fluid where it associates with DBP again. Intracellular transport of vitamin D 

metabolites is controlled by association with intracellular vitamin D binding proteins 

(IDBP)-1 and -2 (Wu et al., 2000).

Figure 5. Androgen-dependent regression of the cranial suspensory ligament.
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(A) Regulation of testicular descent in the rodent embryo. At embryonic day (E) 13.5 

the gonads in both sexes are positioned close to the lower pole of the kidney by two 

ligaments, the cranial suspensory ligament (CSL) and the gubernaculum. At E17.5, 

androgen-induced regression of the CSL in males enables movement of the testes by 

the gubernaculum towards the lower abdomen. In female embryos the CSL persists,

resulting in a position of the ovaries close to the kidneys. (B) Urogential tracts from 

wild type and megalin-deficient newborn male mice. The arrowhead highlights 

aberrant CSL attached to the testes in megalin-/- animals. bl, bladder; go, gonads; ki, 

kidney; ov, ovaries; te, testis.
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