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S u m m a r y  

Remnants oflipoproteins, intestinal chylomicrons, and very low density lipoproteins (VLDL), 
are rapidly cleared from plasma and enter hepatocytes. It has been suggested that remnant lipo- 
proteins are initially captured in the space of Disse by heparan sulfate proteoglycans (HSPGs), 
and that their subsequent internalization into hepatocytes is mediated by members of the LDL- 
receptor gene family. Similarly to lipoprotein remnants, malaria sporozoites are removed from 
the blood circulation by the liver within minutes after injection by Anopheles mosquitoes. The 
sporozoite's surface is covered by the circumsporozoite protein (CS), and its region II-plus has 
been implicated in the binding of the parasites to glycosaminoglycan chains of hepatocyte 
HSPGs. Lactoferrin, a protein with antibacterial properties found in breast milk and neutrophil 
granules, is also rapidly cleared from the circulation by hepatocytes, and can inhibit the hepatic 
uptake of lipoprotein remnants. Here we provide evidence that sporozoites, lactoferrin, and 
remnant lipoproteins are cleared from the blood by similar mechanisms. CS, lactoferrin, and 
remnant lipoproteins compete in vitro and in vivo for binding sites on liver cells. The rele- 
vance of this binding event for sporozoite infectivity is highlighted by our demonstration that 
apoliprotein E-enriched [3-VLDL and lactoferrin inhibit sporozoite invasion of HepG2 cells. 
In addition, malaria sporozoites are less infective in LDL-receptor knockout ( L D L R - / - )  
mice maintained on a high fat diet, as compared with littermates maintained on a normal diet. 
We conclude that the clearance oflipoprotein remnants and sporozoites from the blood is me- 
diated by the same set of highly sulfated HSPGs on the hepatocyte plasma membrane. 

C hylomicron and very low density lipoprotein (VLDL) ~ 
remnants, generated from the metabolism of intestinal 

chylomicrons and hepatic VLDL, are enriched in apolipo- 
protein E (apoE) and rapidly cleared from the circulation 
by the liver (for review see references 1 and 2). Clearance 
and liver uptake are apoE dependent (3-8). On the basis of 
a large body of evidence from cell culture (9, 10) and in 
vivo (11) studies it has been postulated that the initial se- 
questration of lipoprotein particles is mediated mainly by 
hepatic heparan sulfate proteoglycans (HSPGs), and that 
this facilitates their subsequent interiorization by the low 
density lipoprotein receptor (LDLR), and the LDLR-related 

1Abbreviations used in this paper: apoE, apoliprotein E; CS, circumsporozo- 
ite protein; EEF, exoerythrocytic forms; GAG, glycosaminoglycan; 
HPRT, hypoxanthine phosphorybosyl transferase; HSPG, heparan sulfate 
proteoglycan; LDLR, low density lipoprotein receptor; LRP, LDLR- 
related protein; RT, reverse transcriptase; TBS, Tris-buffered saline; 
TRAP/SSP2, thrombospondin-related adhesive protein/sporozoite sur- 
face protein 2; VLDL, very low density lipoprotein. 

protein (LRP) (12). Lactoferrin also binds to HSPGs and 
LRP (12-14), and competes with remnant lipoproteins for 
hepatic clearance from the circulation and for internaliza- 
tion by hepatocytes (15, 16). 

There are intriguing similarities between the clearance 
patterns of the major surface protein of malaria sporozoites, 
the circumsporozoite protein (CS) (17), and remnant lipo- 
proteins. Within minutes after intravenous injection into 
mice, CS accumulates in the space of Disse on the plasma 
membrane of hepatocyte microvilli (18). Heparinase treat- 
ment of liver sections that have been incubated with CS, 
and other in vitro experiments using hepatocytes and 
HepG2 cells as targets, demonstrate that CS binds to 
HSPGs (19, 20). The proteoglycan-binding portion of CS 
(19, 21) is region II-plus (22), a stretch of amino acids 
highly conserved in all species of malaria parasites (23). The 
region II-plus motif is also found in thrombospondin-related 
adhesive protein/sporozoite surface protein 2 (TRAP/ 
SSP2), another surface protein of malaria sporozoites (24, 
25) that binds to cell surface HSPGs (26, 27). Within re- 
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Plasmodium falciparum CS region I1+ 

EWSPCSVTCGNGIQ VRIK 
Plasmodium berghei CS region I1+ 

EWSQCNVTCGSGIRVRKR 

Plasmodium yoelii CS region il+ 

EWSQCSVTCGSG VRVRKR 

Apolipoprotein E (aa 142-161) 

RKLRKRLLRDAEDLQKRLA V 

Lactoferrin (aa 10-28) 

CAVS QPETKCFQRNMRKI/R 
Figure 1. Heparin binding motifs of P. falciparum, P. berghei, and P. 
yoelii CS, apoE, and lactoferrin. Boldface italics indicate amino acid resi- 
dues of CS protein required for binding to HSPGs (22). Amino acid resi- 
dues forming a similar motif in the heparin-binding domains of apoE (30, 
31) and lactoferrin (16, 28, 29) are also highlighted. 

g ion II-plus,  the positively charged a mi n o  acids and in ter -  
spersed hydrophobic  residues in its C O O H - t e r m i n a l  end 
(see Fig. 1) are critical for b i n d i n g  to HSPGs  (22). An  ionic 
interact ion be tween  these basic residues and the negatively 
charged sulfate moiet ies  o f  HSPGs  is most  likely involved  
since chlorate, a metabol ic  inh ib i tor  o f  sulfation, markedly 
decreases CS b ind i n g  to H e p G 2  cells (Sinnis, P., m a n u -  
script in preparation).  As shown in Fig. 1, a similar m o t i f  is 
found  in the hepa r in -b ind ing  domains  o f  apoE and lacto- 
ferrin (16, 28-31) .  In this paper we provide exper imental  
evidence in support  o f  the hypothesis that CS, malaria 
sporozoites, r emnan t  l ipoproteins,  and lactoferrin are rec- 
ognized by  the same set o f  cell surface H S P G  molecules in 
vitro and are cleared from the circulat ion by hepatocyte 
HSPGs in vivo. 

Materials and Methods 
Materials. CS protein, the Escherichia coli-derived recombi- 

nant CS27IVC (27-123 [NANPNVDP]3[NANP]2~300-411), rep- 
resents the complete Plasmodiumfalciparum CS sequence from the 
T4 isolate, except that the hydrophobic NH2- and COOH-te r -  
minal amino acids 1-26 and 412-424 have been deleted and five 
histidine residues have been added to the C O O H  terminus to fa- 
cilitate purification (32). The recombinant protein used in these 
studies was generously provided by Dr. Bela Takacs (F. Hoff- 
mann-La Roche Ltd., Basel, Switzerland). Recombinant human 
apoE (E3 isoform), obtained from E. Coil (33), was a gift from 
Dr. Tikva Vogel (Biotechnology General, Rehovot, Israel). mAb 
2AI0 is directed against an epitope contained in the (NANP)n re- 
peat domain of P. falciparum CS (34) and mAb 2E6, a gift from 

Dr. Moriya Tsuji (New York University Medical Center), reacts 
with the liver stage of Plasmodium berghei (35). ]3-migrating VLDL 
(]3-VLDL; d <1.006 g/ml) was prepared from the plasma of rab- 
bits fed for 4 d with a 2% (wt/wt) cholesterol, 10% (vol/wt) co- 
conut oil diet, as described (36), ApoE-enriched ]3-VLDL was 
prepared by coincubating apoE and [3-VLDL at a ratio of 1:1 for 
1 h at 37~ before use. 

Mice. L D L R - / -  mice were created by targeted gene dis- 
ruption as described (37). All other mice, including a p o E - / -  
mice, were purchased from The Jackson Laboratory (Bar Harbor, 
ME). Mice on special diets were fed either normal mouse chow 
(Purina rodent chow #5001; Purina Mills, St. Louis, MO) or a 
1.25% cholesterol, high saturated fat diet as described (38) for 5 d 
before each experiment. Briefly, the high fat diet consisted of 
three parts normal chow mixed with one part mouse chow con- 
taining cholesterol, cocoa butter, casein, and sodium cholate 
(TD78399 from Harlan Teklad Premier Laboratory Diets, Madi- 
son, WI). The final high fat diet contained 1.25% cholesterol, 
7.5% (wt/wt) cocoa butter, 7.5% casein, and 0.5% (wt/wt) so- 
dium cholate. 

Binding of CS to HepG2 Cells. Assays were carried out as de- 
scribed (22). Briefly, HepG2 cells were grown in 96-well plates, 
fixed with 4% paraformaldehyde, and blocked with 1% BSA in 
Tris-buffered saline (TBS/BSA). When lactoferrin or transferrin 
(both from Sigma Chemical Co., St. Louis, MO) was used as an 
inhibitor, cells were coincubated with 2.5 btg/ml of CS and the 
inhibitor at the indicated concentrations for 1 h at 37~ After 
washing, cells were incubated with 12SI-labeled mAb 2At0, 
washed, and counted in a gamma counter. In the experiments 
with apoE, [3-VLDL, and apoE-enriched [3-VLDL, the inhibitors 
were preincubated with the cells for 30 rain and then CS protein 
was added to a final concentration of 2.5 btg/ml. CS and the in- 
hibitor were then coincubated with the cells for 45 rain at 37~ 
and the assay was processed as above. 

Clearance Experiments. Mice were anesthetized with intraperi- 
toneal sodium pentobarbital injection (-~ Izg/gm) and injected 
intravenously with 7 • 10 s cpm of 12Sl-labeled CS, prepared as 
described (18) and representing N0.1 b~g of protein in 200 btt 
TBS with 0.1% BSA. At the indicated time points, 50-bd blood 
samples were collected by retroorbital puncture and counted in a 
gamma counter. To study the effect of lactoferrin on CS clear- 
ance, radiolabeled CS was injected 5 nfin after the injection of 3 mg 
of lactoferrin in 250 bL1 TBS or TBS alone. CS clearance in 
L D L R - / -  and a p o E - / -  mice was performed 5 d after the an- 
imals were put on a high fat diet, and plasma cholesterols were 
measured on the day of the clearance experiment using an assay 
kit obtained from Sigma Chemical Co. When organs were har- 
vested for counting, the mice were injected with 4 • l0 s cpm of 
CS; 2 min later, the mice were killed, exsanguinated, and their 
organs were removed, rinsed in TBS, and counted in a gamma 
counter. 

Assw for Sporozoite Infectivity In Vitro. This was performed as 
described (39, 40) with modifications as described (21). Briefly, 
HepG2 cells were plated in chamber slides, grown for 2 d, and 
incubated for 15 rain with each inhibitor before 50,000 P. berr 
sporozoites were added to each well. 2 h after parasites were 
added, the cells were washed and then grown for an additional 2 d 
after which they were fixed with methanol and stained with mAb 
2E6, followed by goat anti-mouse Ig conjugated to horseradish 
peroxidase and 3,3'-diaminobenzidine. The number ofexoeryth- 
rocytic forms (EEF) in each well were counted microscopically 
using a • 20 light microscope objective. 
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Figure 2. Inhibition of CS binding to HepG2 cells by lactoferrin, 
apoE, and apoE-enriched ~3-VLDL. (A) Paraformaldehyde-fixed HepG2 
cells in 96-well plates were coincubated with CS and either lactoferrin 
(circles) or transferrin (squares) for 1 h. After washing, cells were incubated 
with iodinated mAb 2A10, washed and bound antibody was counted in a 
gamma counter. Shown is percent inhibition of binding of CS to HepG2 
cells in the presence of inhibitor compared with results obtained in the 
absence of inhibitor. Each inhibitor concentration was assayed in triplicate 
and standard deviations were not greater than 5%. (/3) The assay was car- 
ried out as above except that cells were preincubated with apoE (open tri- 
angles), [8-VLDL (closed circles), or apoE-enriched ~-VLDL (dosed triangles) 
for 30 rain. CS was then added for an additional 45 rain, cells were 
washed, and bound CS was quantified as above. (Inset) Results of a similar 

Quantitative P C R  Assay for Sporozoite Infectivity In Vivo. 
L D L P , - / -  mice were fed either a normal or high fat diet for 5 d 
and then injected intravenously with 7,500 Plasmodium yoelii 
sporozoites. Measurement of parasite rtLNA was then performed 
using a competitive PCR assay as described (41). Briefly, 40 h af- 
ter sporozoite injection, the mice were killed, their livers were 
harvested, frozen in liquid nitrogen, crushed, added to 8 ml of 
RNAzol (Biotecx Laboratories Inc., Houston, TX), and vor- 
texed. 1 rnl of liver homogenate was used for RNA purification 
performed according to manufacturer's instructions (Biotecx Lab- 
oratories, Inc.). Reverse transcriptase (RT) and PCP, reactions 
were performed using a RT-PCR kit (Perkin-Elmer, Branch- 
burg, NJ). P-NA was quantified by absorbance at 260 nm, and 
RT reactions were performed with 1 gtg of I<NA and random 
hexamers supplied by the manufacturer. PCP,. of this cDNA was 
perfonned using parasite rRNA primers that recognize P. yoelii- 
specific sequences within the 18S rRNA (5'-CGGGATCCAG- 
GATGTATTCGCTTTAT-3' and 5'-GGGGTACCTTCTTGT- 
CCAACCAATTC-3') in the presence of a competitor template 
constructed by insertion of a 355-bp lambda DNA fragment into 
the cloned 393-bp rP, NA parasite amplification product. The 
competitor molecule is 748 bp in length and the parasite target is 
393 bp. Mouse hypoxanthine phosphorybosyl transferase (HPP, T) 
primers and competitor were used as positive controls to assess 
the efficiency of R.T reactions as described (42). Amplification 
products were analyzed by electrophoretic separation on 2% aga- 
rose in 0.04 M Tris-acetate, 0.001 M EDTA, stained with 0.5 
~g/ml ethidium bromide and photographed under long wave- 
length UV light. 

R e s u l t s  

To examine the relationship between hepatocyte-bind- 
ing sites for CS and apoE/lactoferrin, we performed in 
vitro competit ion experiments using HepG2 cells as targets. 
We  have previously shown that CS binds to these cells in a 
saturable fashion, and that binding is abolished when cells 
are treated with heparitinase (19). Fig. 2 illustrates the inhi-  
bition of CS binding to HepG2 cells by lactoferrin and 
apoE. Between 80 and 90% inhibit ion is obtained with 1.6 
~ M  lactoferrin. Transferrin, a protein with 59% identity to 
lactoferrin but  lacking heparin-binding domains, has no ef- 
fect on CS binding even at much higher concentrations. In 
Fig. 2 B, we compare the abilities of  [3-VLDL (isolated 
from plasma of hyperlipidemic rabbits and used as an ex- 
perimental source of lipoprotein remnants), apoE, and 
apoE-enriched [3-VLDL to inhibit  CS binding to HepG2 
cells. CS binding is inhibited by >80% with 1 btM recom- 
binant apoE. While [3-VLDL alone is inactive, upon addi- 
tion of apoE, it inhibits CS binding in a dose-dependent 
fashion. This finding is in agreement with previous studies 
that have shown that i3-VLDL must be enriched in apoE in 
order to bind with high avidity to cell surface proteogly- 
cans and to LRP (9, 10, 38, 43). At low concentrations, the 

experiment using lower concentrations ofapoE (open triangles) and apoE- 
enriched 13-VLDL (closed triangles). Each inhibitor concentration was as- 
sayed in triplicate and standard deviations were less than 5%. 
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Table 1. Lactoferrin and ApoE-enriched Remnant Lipoproteins Inhibit Sporozoite hwasion of HepG2 Cells 

Percent 
Experiment Inhibitor* No. of EEF* inhibition~ 

l Medium alone* 251,273,305~ 
Transferrin 500 Ixg/ml 20(/,281,254 11 

Lactoferrin 500 Ixg/ml 63,67,8(/ 74 
Lactoferrin 250 b~g/ml 77,100,114 64 
Lactoferrin 125 Ixg/ml 138,137,19{i) 43 

Medium alone 779,730,725 
Transferrin 500 jxg/ml 493,686,736 14 
Lactoferrin 500 Ixg/ml 274,266,27{) 63 

Lactoferrin 250 I.tg/ml 462,476,425 38 
Lactoferrin 125 txg/ml 479,515,535 31 

Medium alone 459,488,424 
ApoE and [3-VLDL 250 }xg/ml 112,138,180 68 

ApoE and ~-VLDL 125 txg/ml 220,253,265 46 
ApoE and [3-VLDL 62 Ixg/ml 323,358,357 23 

Medium alone 928,958,1068 
~-VLDL 250 Ixg/ml t053,930,984 

13-VLDL 125 txg/ml 1051,981,981 
ApoE and 13-VLDL 250 Ixg/ml 486,454,459 51 
ApoE and [3-VLDL 125 Ixg/ml 769,938,792 15 

Medium alone 166, 114, 149 
ApoE and [3-VLDL 250 Ixg/ml 41,59,52 64 
ApoE and [B-VLDL 125 txg/ml 69,105,122 31 
ApoE and [3-VLDL 62 }xg/ml 107,110,111 24 

* HepG2 cells in chamber slides were incubated for 15 rain with each inhibitor before 50,000 P. berehei sporozoites were added to each well. 2 h after 
parasites were added, the cells were washed and grown for an additional 2 d at which time they were fixed and stained. 
~The number of EEF per 20 fields under • magnification in triplicate wells. 
~Calculated using the mean number of parasites in the control group, in which sporozoites were allowed to invade in the presence of medium alone, 
and the mean from the experimental group. 

inhibitory activity of  apoE-enriched [3-VLDL is higher 
than that o f  apoE alone (Fig. 2 B inset). The increased ac- 
tivity of  apoE-enriched [3-VLDL over apoE alone is proba- 
bly greater than that shown in Fig. 2 B, since the molar 
concentration of  apoE after incorporation into lipoprotein 
particles is lower than that of  free apoE. Previous studies (9, 
10, 12) have shown that the binding of  apoE-enriched 
13-VLDL to HepG2 cells is inhibited by lactoferrin, or by 
prior heparitinase treatment o f  the ceils. Our  findings, to- 
gether with these data, indicate that CS, lactoferrin, and 
apoE compete for the same set of  HSPGs on the surface of  
HepG2 cells. 

Next, we asked whether lactoferrin and apoE-enriched 
13-VLDL could prevent the infection o f  HepG2 cells by P. 
berghei, a rodent malaria parasite. Table 1 shows that 3.2 IxM 
(250 txg/ml) lactoferrin, but not an equivalent amount of  
transferrin, inhibits sporozoite invasion by ~50%. Whereas 

~-VLDL alone is inactive, after its enrichment with apoE, 
it inhibits sporozoite invasion of  HepG2 cells by 50-68%. 

Lactoferrin and renmant lipoproteins compete with CS 
not only for binding to hepatocytes in vitro, but also for CS 
clearance by the liver. In Fig. 3 A we show that the re- 
moval of  CS from the circulation is delayed when mice are 
preinjected with 3 mg of  lactoferrin. To verify that lacto- 
fen'in was inhibiting clearance of  CS because it was COlnpeting 
with CS for hepatic binding sites, we performed another 
experiment in which mice preinjected with lactoferrin 
were killed after radiolabeled CS injection and their organs 
were harvested and counted. As shown in Fig. 4 A, mice 
preinjected with 3 nag of  lactoferrin had 24% of  the in- 
jected counts in the liver, whereas control mice preinjected 
with either 3 nag of  transferrin or buffer alone had 60% of 
the injected counts in their livers. Most of  the remaining 
counts were found in the blood, and ~1()% of  the counts 
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Figure 3. Lactoferrin and remnant lipoproteins inhibit CS clearance 
from the circulation. (A) Mice were anesthetized and intravenously in- 
jected with 3 mg of lactoferrin in 250 p.1 of TBS (closed circles) or with 
buffer alone (open circles). 125I-labeled CS was injected intravenously 5 min 
later and 50-pJ blood samples were taken at the indicated time points. Val- 
ues are expressed as a percentage of the radioactivity present in the plasma 
30 s after CS injection�9 There were six mice in each group and error bars 
show the range of absolute values measured. (B) L D L R - / -  mice were 
fed either normal mouse chow (open circles) or a 1.25% cholesterol, high 
saturated fat diet (closed circles) for 5 d before CS injection. Mice were 
anesthetized and measurement of CS clearance from the circulation was 
performed as above. Each group contained five mice and this experiment 
was performed three times with identical results. Error bars show the 
range of absolute values measured. (Inset) L D L R - / -  mice (closed circles) 
and LDLR+/+  matched background controls (C57B6x129F2; open cir- 
cles), both maintained on a normal diet were intravenously injected with 
radiolabeled CS and clearance from the circulation was measured as de- 
scribed above. Each group contained five mice and this experiment was 
repeated twice with identical results. (C) ApoE - / -  mice were fed nor- 
real mouse chow (open triangles) or a 1.25% cholesterol, high saturated fat 
diet ({,pen circles) for 5 d before radiolabeled CS injection. ApoE + / +  
mice of the same background and age as the knockout mice (closed circles) 
were fed normal mouse chow. Mice were anesthetized and CS clearance 
from the circulation was perfomled as above. There were five mice per 
group and this experiment was performed twice with identical results. 

w e r e  e v e n l y  d i s t r ibu ted  in  var ious  organs  w i t h o u t  any  focal 

a c c u m u l a t i o n  (data n o t  shown) .  

T o  s tudy  the  effect o f l i p o p r o t e i n  r e m n a n t s  o n  CS clear-  
ance,  w e  used  L D L R - / -  mice .  W h e n  fed a n o r m a l  diet ,  

these  m i c e  a c c u m u l a t e  LDL,  b u t  n o t  l i p o p r o t e i n  r emnan t s ,  

and  the i r  total  p lasma cho les te ro l  levels are slightly e leva ted  
(-----250 m g / d l ;  37, 38). In  p r e l i m i na r y  studies w e  f o u n d  tha t  

t he re  was n o  s ignif icant  d i f ference  in CS  c learance  b e t w e e n  
L D L R - / -  and  L D L R + / +  m i c e  fed n o r m a l  diets (inset,  
Fig. 3 B). W h e n  L D L R - / -  m ice  are fed a d ie t  h i g h  in  

sa tura ted  fat, t he i r  p lasma cho les t e ro l  levels rise because  o f  
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the  a c c u m u l a t i o n  o f  l i p o p r o t e i n  r e m n a n t s  and  L D L  (37, 

38). As s h o w n  in Fig. 3 B, CS c learance  was de layed  in  

L D L R - / -  m ice  fed a h i g h  fat d ie t  (plasma cho les te ro l  

1 ,120 - 79 m g / d l )  w h e n  c o m p a r e d  w i t h  L D L R - / -  l i t -  

t e rmates  fed a n o r m a l  d ie t  (plasma cho les te ro l  179 -+ 31 
m g / d l ) .  T o  ver i fy  tha t  the  delay in CS c learance  was due  to 
an  i n h i b i t i o n  o f  CS  b i n d i n g  in the  l iver,  w e  p e r f o r m e d  an-  

o the r  e x p e r i m e n t  in  w h i c h  the  mice  we re  kil led after radio-  

labe led  CS  i n j e c t i o n  and  the i r  organs  w e r e  ha rves t ed  and  

c o u n t e d .  W h e n  L D L R - / -  m ice  fed a h i g h  fat d ie t  w e r e  
ki l led 2 m i n  after  rad io labe led  CS in jec t ion ,  43% o f  the  i n -  
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Figure 4. Lactoferrin and remnant lipoproteins inhibit CS clearance to 
the liver. (A) Mice were injected with either 3 mg oflactoferrin or trans- 
ferrin in 200 p,l of TBS or with buffer alone. 5 min later they were in- 
jected with 12SI-labeled CS and then killed 2 min later. The mice were 
exsanguinated, their organs harvested, and the radioactivity in the organs 
was determined. Values are expressed as a percentage of the radioactivity 
injected. There were three mice in each group and error bars show the 
range of absolute values measured. (B) L D L R - / -  mice were fed either 
normal mouse chow or a 1.25%, cholesterol, high saturated Fat diet for 5 d. 
On day 5, the mice were injected with t2Sl-labeled CS and 2 rain later the 
mice were killed, exsanguinated, and their organs were harvested and 
counted in a gamma counter. Values are expressed as a percentage of the 
radioactivity injected. There were six mice in each group. 

jec ted  counts were found in the liver, whereas 63% of  the 
injected counts were found in the livers o f  mice fed a nor-  
mal diet (Fig. 4/3). O f  note, the inhibit ion o f  CS clearance 
observed in mice preinjected with lactoferrin was greater 
than that observed in L D L R - / -  mice fed a high fat diet 
(compare Fig. 3, A and/3). This can be explained by differ- 
ences in the plasma concentrations o f  the inhibitors. In the 
experiments with lactoferrin, plasma levels o f  the inhibitor 
were ,'o2 mg/ml ,  whereas in L D L R - / -  mice maintained 
on a high fat diet, plasma apoE levels increase two-  to four- 
fold, i.e., from 0.08 to 0.4 m g / m l  (38, 44). 

It could be argued that the delay in CS clearance in 
L D L R - / -  mice fed a high fat diet is not  due to CS com-  
pet i t ion with apoE-enr iched remnant particles, but  rather 
to secondary, nonspecific effects o f  high plasma cholesterol 
levels. To exclude this possibility, we compared CS clear- 
ance in apoE knockout  mice ( a p o E - / - )  and controls. 
A p o E - / -  mice fed a normal diet have plasma cholesterol 
levels between 500 and 700 mg/dl .  W h e n  fed a high fat 
diet, their cholesterol levels rise to over 2,000 mg/d l  due to 
the accumulation o f  apoE-deficient  remnant l ipoproteins 
(7, 8, 38). As shown in Fig. 3 C, CS clearance is not  signif- 
icantly different between a p o E - / -  mice fed a normal diet 
(plasma cholesterol 726 + 62 mg/dl)  and those fed a high 
fat diet (plasma cholesterol 2,159 + 496 mg/dl) .  In addi-  
tion, CS clearance in a p o E + / +  mice (plasma cholesterol 
<130  mg/dl)  was not  significantly different from clearance 
in a p o E - / -  mice. Thus, i f  apoE is missing, high levels of  
circulating remnant  l ipoproteins do not  compete with CS 
for binding to liver HSPGs. 

Finally, we tested whether  we could inhibit malaria in- 
fection in a rodent model o f  the disease. Using a quantitative 
P C R  assay, we compared the amounts o f  parasite r R N A  in 
the livers o f  L D L R - / -  mice infected with Plasmodium 
sporozoites 40 h earlier. W e  found that L D L R - / -  mice 
fed a high fat diet had eightfold less parasite r R N A  in their 
livers than L D L R - / -  littermates fed a normal diet (Fig. 5). 

D i s c u s s i o n  

Here we show that CS, lactoferrin, and remnant l ipo- 
proteins compete  for the same hepat ic-binding sites. Al-  
though the nature o f  the liver molecules involved in the 
rapid clearance o f  these ligands from the circulation has not  
been unequivocally established, a large body o f  evidence 
derived from in vitro (for a review see reference 12) and in 
vivo (11) studies suggest that they are HSPGs. This idea is 
supported by the recent observation that the injection o f  
heparinase into mice delays the clearance oflactoferr in and 
l ipoprotein remnants from the circulation (45). O u r  data, 
demonstrat ing that CS can compete  with these physiologi-  
cal ligands for clearance by hepatocytes, provide additional 
support for this hypothesis since injected CS binds almost 
exclusively to the microvilli  on the basolateral domain o f  
hepatocytes (18) and in vitro, this binding is completely elim- 
inated when liver sections are treated with heparitinase (19). 

Although HSPGs are widely distributed in animal tissues, 
CS, apoE, and lactoferrin are retained almost exclusively in 
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Figure 5. Remnant lipoproteins inhibit infectivity of P. yoelii sporozo- 
ites in mice. L D L R - / -  mice were fed either a normal or high fat diet 
(four mice per group) for 5 d and then injected intravenously with 7,500 
P. yoelii sporozoites. 40 h after sporozoite injection, the mice were assayed 
for malaria infection by measurement of parasite rRNA using quantitative 
RT-PCR. Shown are PCR products of reactions using parasite rRNA 
primers and (A) 1 pg or (B) 5 pg of parasite rRNA competitor. (C) prim- 
ers for mouse HPRT and 0.l pg of the HPRT competitor were used. 
The competitor band is not visible in PCRs using cDNA from the four 
mice fed a normal diet, whereas faint bands can be seen in reactions using 
cDNA from the four mice fed a high fat diet (A). When the amount of 
competitor in the reactions is increased (B), the competitor band is clearly 
more abundant than the parasite target in the mice fed the high fat diet, 
and is less than or equal to the parasite target in mice fed normal chow. In 
reactions using HPRT primers and competitor, an equal ratio of the in- 
tensities of the competitor and target bands for all mice, regardless of diet, 
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the liver. This can be explained in part by the accessibility 
o f  hepatocyte HSPGs to the circulation since the endothe-  
lial cells l ining the hepatic sinusoids have open fenestra- 
tions, allowing for direct contact between hepatocytes and 
the b lood circulation. However ,  endothelial  cells o f  other  
organs also have contact with the circulation and bear 
HSPGs on their plasma membranes.  Structural diversity o f  
HSPG glycosaminoglycan (GAG) chains, generated by post-  
polymeric  modifications such as de-N-acetyla t ion,  N-sulfa-  
t ion and O-sulfation, is associated with defined biological 
functions (for a review see reference 46) and may explain 
the selective binding o f  CS, apoE, and lactoferrin to hepa-  
tocyte HSPGs. Recen t  studies have demonstrated that he-  
patic HSPGs have levels o f  N -  and O-sulfation that are at 
least 50% higher  than most other HSPGs (47), whereas the 
levels o f  N -  and O-sulfation o f  endothelial  cell HSPGs are 
low (47, 48). Al though the structure o f  the GAGs that bind 
CS and the other  ligands is not  known,  the degree ofsulfa-  
tion o f H S P G s  o f  HepG2  cells is critical for CS binding and 
sporozoite invasion (Sinnis, P., manuscript in preparation), 
suggesting that these ligands can indeed discriminate be-  
tween different G A G  chain structures. 

The  present studies also demonstrate that remnant  l ipo-  
proteins inhibit  sporozoite infectivity in mice. This sug- 
gests, for the first time, that the in vitro demonstrat ion that 
HSPGs are the hepat ic-binding sites for CS, is o f  relevance 
in malaria infection. The  precise step at which CS binding 
to hepatic HSPGs is required during sporozoite invasion o f  
hepatocytes is not  known,  but  the clearance data presented 
here and elsewhere (18) suggest that CS mediates the initial 
arrest o f  the parasites in the liver. Previous studies demon-  
strating that only multimers o f  CS bind in a stable fashion 
to HSPGs (21, 22), suggest that the adhesion ofsporozoi tes  
to hepatocytes involves a mult imeric interaction between 
sporozoite CS, which forms a dense coat on the parasite 
surface (49), and hepatocyte HSPGs, which are present on 
the cell surface in the range o f  4 • 106 molecules per  cell 
(50, 51). The  abundance o f  HSPG molecules on the cell 
surface, together  with the large number  o f  hepatocytes in 
the liver (1011), create a high capacity capture system that 
can, in part, explain the well known  efficiency o f  sporozo-  
ite infection. T R A P / S S P 2 ,  which also contains a region II-  
plus motif, may contribute to sporozoite binding in the 
liver. In contrast to CS, however ,  T R A P / S S P 2  is detected 
as clusters in restricted regions o f  the parasite plasma m e m -  
brane (27, 52, 53) and its relative contr ibut ion to sporozo-  
ire adhesion to hepatocytes is not  known.  

After sequestration by HSPGs in the liver, sporozoites 
must enter  hepatocytes in order to successfully complete  
their development.  The  mechanism by which they enter 

indicates that the efficiency of the RT reactions was equivalent in both 
groups. Molecular size markers (M); bp: 1,000, 750, 500, 300, 150, and 
50. (D) The photograph in B was analyzed by densitometry. For each am- 
plification reaction, a target/competitor ratio was calculated and this ratio 
was used to determine the amount of parasite RNA per microgram of 
liver RNA. The mean for each group of mice is plotted with error bars 
showing the range of values calculated. 



cells is unknown although our results raise the possibility 
that sporozoites, like renmant lipoproteins, are interiorized 
by LDLR and/or  LRP. Alternately, the attached sporozo- 
itcs may use their own actin-based motility system to ac- 
tively invade hepatoctyes, an idea supported by videomi-  
croscopic observations (54) and recent studies of  cell 
invasion by Toxoplasma gondii (55), a parasite that belongs 
to ttae ~ame phylum as Plasmodium. 

Al~ unresolved issue is the anatomical localization of  the 
GAGs that bind lipoprotein remnants and, as suggested by 
the present results, inalaria sporozoites. It is generally as- 
sumed that l ipoprotem renmants traverse the fenestrated 
endothelium of  the liver sinusoids and enter the space of  
l)isse where they are retained by HSPGs. The  diameter o f  
~porozoites (1 I, tM), however,  is greater than the average 
diameter o f  the fenestrae (0.1 I~M; 56, 57), making this an 
unlikely model for sporozoite attachment to hepatic HSPGs. 
Another possibility is that the interaction between the 
GAG chains of  hepatic HSPGs with their physiologic 
ligands, as well as with sporozoites, takes place not in the 
space of  l)isse, but within the sinusoids. I f  one considers 

the fact that the space of  Disse is a narrow, loose matrix of  
proteins and proteoglycans rather than a true basement 
membrane,  it is possible that the long HSPG GAG chains 
of  the hepatocytes protrude through the fenestrae and are 
in direct contact with the blood circulation. This model, 
strengthened by the finding that the bulk of  the sulfation of  
the hepatcyte HSPG GAG chains is found along the distal 
portion of  the molecules (47), would greatly increase the 
likelihood of  productive encounters between the positvely 
charged regions of  the ligands and HSPGs. 

The  utilization by sporozoite and lipoprotein remnants 
of  a common  pathway of  retention by the liver is unex-  
pected, and brings together two different areas of  research. 
Our  findings raise the intriguing possibility that the lower 
parasite densities and fewer episodes of  clinical malaria ob- 
served in neonates (58, 59) are, at least in part, due to the 
high concentration oflactoferrin (60) and the high fat con- 
tent o f  breast milk (61). The  present findings thus provide 
new perspectives for the development  of  prophylactic 
agents against malaria, and for the understanding of  malaria 
pathology and epidemiology. 
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